数据可视化是数据科学家工作中的重要组成部分。在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解。创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型、高维数据集。在项目结束时,以清晰、简洁和引人注目的方式展现最终结果是非常重要的,因为你的受众往往是非技术型客户,只有这样他们才可以理解。

Matplotlib 是一个流行的 Python 库,可以用来很简单地创建数据可视化方案。但每次创建新项目时,设置数据、参数、图形和排版都会变得非常繁琐和麻烦。在这篇博文中,我们将着眼于 5 个数据可视化方法,并使用 Python Matplotlib 为他们编写一些快速简单的函数。与此同时,这里有一个很棒的图表,可用于在工作中选择正确的可视化方法!

散点图

散点图非常适合展示两个变量之间的关系,因为你可以直接看到数据的原始分布。 如下面第一张图所示的,你还可以通过对组进行简单地颜色编码来查看不同组数据的关系。想要可视化三个变量之间的关系? 没问题! 仅需使用另一个参数(如点大小)就可以对第三个变量进行编码,如下面的第二张图所示。

现在开始讨论代码。我们首先用别名 “plt” 导入 Matplotlib 的 pyplot 。要创建一个新的点阵图,我们可调用 plt.subplots() 。我们将 x 轴和 y 轴数据传递给该函数,然后将这些数据传递给 ax.scatter() 以绘制散点图。我们还可以设置点的大小、点颜色和 alpha 透明度。你甚至可以设置 Y 轴为对数刻度。标题和坐标轴上的标签可以专门为该图设置。这是一个易于使用的函数,可用于从头到尾创建散点图!

  1. import matplotlib.pyplot as pltimport numpy as npdef scatterplot(x_data, y_data, x_label="", y_label="", title="", color = "r", yscale_log=False):
  2. # Create the plot object
  3. _, ax = plt.subplots()    # Plot the data, set the size (s), color and transparency (alpha)
  4. # of the points
  5. ax.scatter(x_data, y_data, s = 10, color = color, alpha = 0.75)    if yscale_log == True:
  6. ax.set_yscale('log')    # Label the axes and provide a title
  7. ax.set_title(title)
  8. ax.set_xlabel(x_label)
  9. ax.set_ylabel(y_label)

折线图

当你可以看到一个变量随着另一个变量明显变化的时候,比如说它们有一个大的协方差,那最好使用折线图。让我们看一下下面这张图。我们可以清晰地看到对于所有的主线随着时间都有大量的变化。使用散点绘制这些将会极其混乱,难以真正明白和看到发生了什么。折线图对于这种情况则非常好,因为它们基本上提供给我们两个变量(百分比和时间)的协方差的快速总结。另外,我们也可以通过彩色编码进行分组。

这里是折线图的代码。它和上面的散点图很相似,只是在一些变量上有小的变化。

  1. def lineplot(x_data, y_data, x_label="", y_label="", title=""):
  2. # Create the plot object
  3. _, ax = plt.subplots()    # Plot the best fit line, set the linewidth (lw), color and
  4. # transparency (alpha) of the line
  5. ax.plot(x_data, y_data, lw = 2, color = '#539caf', alpha = 1)    # Label the axes and provide a title
  6. ax.set_title(title)
  7. ax.set_xlabel(x_label)
  8. ax.set_ylabel(y_label)

直方图

直方图对于查看(或真正地探索)数据点的分布是很有用的。查看下面我们以频率和 IQ 做的直方图。我们可以清楚地看到朝中间聚集,并且能看到中位数是多少。我们也可以看到它呈正态分布。使用直方图真得能清晰地呈现出各个组的频率之间的相对差别。组的使用(离散化)真正地帮助我们看到了“更加宏观的图形”,然而当我们使用所有没有离散组的数据点时,将对可视化可能造成许多干扰,使得看清真正发生了什么变得困难。

下面是在 Matplotlib 中的直方图代码。有两个参数需要注意一下:首先,参数 n_bins 控制我们想要在直方图中有多少个离散的组。更多的组将给我们提供更加完善的信息,但是也许也会引进干扰,使得我们远离全局;另一方面,较少的组给我们一种更多的是“鸟瞰图”和没有更多细节的全局图。其次,参数 cumulative 是一个布尔值,允许我们选择直方图是否为累加的,基本上就是选择是 PDF(Probability Density Function,概率密度函数)还是 CDF(Cumulative Density Function,累积密度函数)。

  1. def histogram(data, n_bins, cumulative=False, x_label = "", y_label = "", title = ""):
  2. _, ax = plt.subplots()
  3. ax.hist(data, n_bins = n_bins, cumulative = cumulative, color = '#539caf')
  4. ax.set_ylabel(y_label)
  5. ax.set_xlabel(x_label)
  6. ax.set_title(title)

想象一下我们想要比较数据中两个变量的分布。有人可能会想你必须制作两张直方图,并且把它们并排放在一起进行比较。然而,实际上有一种更好的办法:我们可以使用不同的透明度对直方图进行叠加覆盖。看下图,均匀分布的透明度设置为 0.5 ,使得我们可以看到他背后的图形。这样我们就可以直接在同一张图表里看到两个分布。

对于重叠的直方图,需要设置一些东西。首先,我们设置可同时容纳不同分布的横轴范围。根据这个范围和期望的组数,我们可以真正地计算出每个组的宽度。最后,我们在同一张图上绘制两个直方图,其中有一个稍微更透明一些。

  1. # Overlay 2 histograms to compare themdef overlaid_histogram(data1, data2, n_bins = 0, data1_name="", data1_color="#539caf", data2_name="", data2_color="#7663b0", x_label="", y_label="", title=""):
  2. # Set the bounds for the bins so that the two distributions are fairly compared
  3. max_nbins = 10
  4. data_range = [min(min(data1), min(data2)), max(max(data1), max(data2))]
  5. binwidth = (data_range[1] - data_range[0]) / max_nbins    if n_bins == 0
  6. bins = np.arange(data_range[0], data_range[1] + binwidth, binwidth)    else:
  7. bins = n_bins    # Create the plot
  8. _, ax = plt.subplots()
  9. ax.hist(data1, bins = bins, color = data1_color, alpha = 1, label = data1_name)
  10. ax.hist(data2, bins = bins, color = data2_color, alpha = 0.75, label = data2_name)
  11. ax.set_ylabel(y_label)
  12. ax.set_xlabel(x_label)
  13. ax.set_title(title)
  14. ax.legend(loc = 'best')

柱状图

当你试图将类别很少(可能小于10)的分类数据可视化的时候,柱状图是最有效的。如果我们有太多的分类,那么这些柱状图就会非常杂乱,很难理解。柱状图对分类数据很好,因为你可以很容易地看到基于柱的类别之间的区别(比如大小);分类也很容易划分和用颜色进行编码。我们将会看到三种不同类型的柱状图:常规的,分组的,堆叠的。在我们进行的过程中,请查看图形下面的代码。

常规的柱状图如下面的图1。在 barplot() 函数中,xdata 表示 x 轴上的标记,ydata 表示 y 轴上的杆高度。误差条是一条以每条柱为中心的额外的线,可以画出标准偏差。

分组的柱状图让我们可以比较多个分类变量。看看下面的图2。我们比较的第一个变量是不同组的分数是如何变化的(组是G1,G2,……等等)。我们也在比较性别本身和颜色代码。看一下代码,y_data_list 变量实际上是一个 y 元素为列表的列表,其中每个子列表代表一个不同的组。然后我们对每个组进行循环,对于每一个组,我们在 x 轴上画出每一个标记;每个组都用彩色进行编码。

堆叠柱状图可以很好地观察不同变量的分类。在图3的堆叠柱状图中,我们比较了每天的服务器负载。通过颜色编码后的堆栈图,我们可以很容易地看到和理解哪些服务器每天工作最多,以及与其他服务器进行比较负载情况如何。此代码的代码与分组的条形图相同。我们循环遍历每一组,但这次我们把新柱放在旧柱上,而不是放在它们的旁边。

  1. def barplot(x_data, y_data, error_data, x_label="", y_label="", title=""):
  2. _, ax = plt.subplots()
  3. # Draw bars, position them in the center of the tick mark on the x-axis
  4. ax.bar(x_data, y_data, color = '#539caf', align = 'center')
  5. # Draw error bars to show standard deviation, set ls to 'none'
  6. # to remove line between points
  7. ax.errorbar(x_data, y_data, yerr = error_data, color = '#297083', ls = 'none', lw = 2, capthick = 2)
  8. ax.set_ylabel(y_label)
  9. ax.set_xlabel(x_label)
  10. ax.set_title(title)
  11. def stackedbarplot(x_data, y_data_list, colors, y_data_names="", x_label="", y_label="", title=""):
  12. _, ax = plt.subplots()
  13. # Draw bars, one category at a time
  14. for i in range(0, len(y_data_list)):
  15. if i == 0:
  16. ax.bar(x_data, y_data_list[i], color = colors[i], align = 'center', label = y_data_names[i])
  17. else:
  18. # For each category after the first, the bottom of the
  19. # bar will be the top of the last category
  20. ax.bar(x_data, y_data_list[i], color = colors[i], bottom = y_data_list[i - 1], align = 'center', label = y_data_names[i])
  21. ax.set_ylabel(y_label)
  22. ax.set_xlabel(x_label)
  23. ax.set_title(title)
  24. ax.legend(loc = 'upper right')
  25. def groupedbarplot(x_data, y_data_list, colors, y_data_names="", x_label="", y_label="", title=""):
  26. _, ax = plt.subplots()
  27. # Total width for all bars at one x location
  28. total_width = 0.8
  29. # Width of each individual bar
  30. ind_width = total_width / len(y_data_list)
  31. # This centers each cluster of bars about the x tick mark
  32. alteration = np.arange(-(total_width/2), total_width/2, ind_width)
  33. # Draw bars, one category at a time
  34. for i in range(0, len(y_data_list)):
  35. # Move the bar to the right on the x-axis so it doesn't
  36. # overlap with previously drawn ones
  37. ax.bar(x_data + alteration[i], y_data_list[i], color = colors[i], label = y_data_names[i], width = ind_width)
  38. ax.set_ylabel(y_label)
  39. ax.set_xlabel(x_label)
  40. ax.set_title(title)
  41. ax.legend(loc = 'upper right')

箱形图

我们之前看了直方图,它很好地可视化了变量的分布。但是如果我们需要更多的信息呢?也许我们想要更清晰的看到标准偏差?也许中值与均值有很大不同,我们有很多离群值?如果有这样的偏移和许多值都集中在一边呢?

这就是箱形图所适合干的事情了。箱形图给我们提供了上面所有的信息。实线框的底部和顶部总是第一个和第三个四分位(比如 25% 和 75% 的数据),箱体中的横线总是第二个四分位(中位数)。像胡须一样的线(虚线和结尾的条线)从这个箱体伸出,显示数据的范围。

由于每个组/变量的框图都是分别绘制的,所以很容易设置。xdata 是一个组/变量的列表。Matplotlib 库的 boxplot() 函数为 ydata 中的每一列或每一个向量绘制一个箱体。因此,xdata 中的每个值对应于 ydata 中的一个列/向量。我们所要设置的就是箱体的美观。

  1. def boxplot(x_data, y_data, base_color="#539caf", median_color="#297083", x_label="", y_label="", title=""):
  2. _, ax = plt.subplots()
  3. # Draw boxplots, specifying desired style
  4. ax.boxplot(y_data
  5. # patch_artist must be True to control box fill
  6. , patch_artist = True
  7. # Properties of median line
  8. , medianprops = {'color': median_color}
  9. # Properties of box
  10. , boxprops = {'color': base_color, 'facecolor': base_color}
  11. # Properties of whiskers
  12. , whiskerprops = {'color': base_color}
  13. # Properties of whisker caps
  14. , capprops = {'color': base_color})
  15. # By default, the tick label starts at 1 and increments by 1 for
  16. # each box drawn. This sets the labels to the ones we want
  17. ax.set_xticklabels(x_data)
  18. ax.set_ylabel(y_label)
  19. ax.set_xlabel(x_label)
  20. ax.set_title(title)

结语

使用 Matplotlib 有 5 个快速简单的数据可视化方法。将相关事务抽象成函数总是会使你的代码更易于阅读和使用!我希望你喜欢这篇文章,并且学到了一些新的有用的技巧。

来源https://www.iteye.com/news/32988

[转]5 种使用 Python 代码轻松实现数据可视化的方法的更多相关文章

  1. 5 种使用 Python 代码轻松实现数据可视化的方法

    数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使 ...

  2. Python使用plotly绘制数据图表的方法

    转载:http://www.jb51.net/article/118936.htm 本篇文章主要介绍了Python使用plotly绘制数据图表的方法,实例分析了plotly绘制的技巧. 导语:使用 p ...

  3. 一种部署 Python 代码的新方法

    在Nylas,我们喜欢使用Python进行开发.它的语法简单并富有表现力,拥有大量可用的开源模块和框架,而且这个社区既受欢迎又有多样性.我们的后台是纯用 Python 写的,团队也经常在 PyCon ...

  4. 4种更快更简单实现Python数据可视化的方法

    数据可视化是数据分析或机器学习项目中十分重要的一环.通常,你需要在项目初期进行探索性的数据分析(EDA),从而对数据有一定的了解,而且创建可视化确实可以使分析的任务更清晰.更容易理解,特别是对于大规模 ...

  5. Python和多线程(multi-threading)。这是个好主意码?列举一些让Python代码以并行方式运行的方法。

    Python并不支持真正意义上的多线程.Python中提供了多线程包,但是如果你想通过多线程提高代码的速度,使用多线程包并不是个好主意.Python中有一个被称为Global Interpreter ...

  6. python面试题之多线程好吗?列举一些让Python代码以并行方式运行的方法

    答案 Python并不支持真正意义上的多线程.Python中提供了多线程包,但是如果你想通过多线程提高代码的速度,使用多线程包并不是个好主意.Python中有一个被称为Global Interpret ...

  7. 数据可视化:使用python代码实现可视数据随机漫步图

    #2020/4/5 ,是开博的第一天,希望和大家相互交流学习,很开森,哈哈~ #像个傻子哟~       #好,我们进入正题, #实现功能:利用python实现数据随机漫步,漫步点数据可视化 #什么是 ...

  8. python 科学计算及数据可视化

    第一步:利用python,画散点图. 第二步:需要用到的库有numpy,matplotlib的子库matplotlib.pyplot numpy(Numerical Python extensions ...

  9. 《Python数据分析》笔记——数据可视化

    数据可视化 matplotlib绘图入门 为了使用matplotlib来绘制基本图像,需要调用matplotlib.pyplot子库中的plot()函数 import matplotlib.pyplo ...

随机推荐

  1. 38-docker managed volume

    docker managed volume 与 bind mount 在使用上的最大区别是不需要指定 mount 源,指明 mount point 就行了.还是以 httpd 容器为例: 我们通过 - ...

  2. SQL 高效运行注意事项(三)

    合理配置tempdb 1.tempdb在SQL Server停掉,重启时会自动的drop,re-create. 根据model数据库会默认建立一个新的 2.tempdb对IO的要求比较高,最好分配到高 ...

  3. Shell—常见报错问题

    bash:$'\r': command not found 造成这个问题的原因是Windows环境下换行的“\r”到了Linux环境下不能够识别了,因为Linux环境下默认的换行符为“\n”,我们只需 ...

  4. PM8909 linear charger硬件概述

    电池充电是由qpnp-vm-bus.c(电池驱动BMS)和qpnp-linear-charger.c(线性充电器)组成: SMMB charger:Switch-ModeBattery Charger ...

  5. flask之web网关、三件套、配置、路由(参数、转化器及自定义转化器)、cbv、模板语言、session

    目录 1.wsgiref.py 2.werzeug.py 3.三件套 4.配置文件 5.路由本质 6.cbv.py 7.路由转化器 8.自定义转化器 9.模板语言 10.session原理 11.te ...

  6. WPF 字体设置

    原文:WPF 字体设置 WPF 主界面 更换字体 可全局 但是有的时候有的窗体 字体还是没变 可以做全局样式 <Window x:Class="CLeopardTestWpf.Main ...

  7. PHP读取文件和目录

    1:目录列表 2:文件列表

  8. apt-get failed:The following signatures were invalid: BADSIG

    参考如下链接: https://askubuntu.com/questions/131601/gpg-error-release-the-following-signatures-were-inval ...

  9. clientHeight—scrollHeight—offsetHeight三者的区别

    clientHeight,scrollHeight,offsetHeight 这三个dom属性有时让人觉得相似但又不相似 以前对它们的理解也有一些模糊,现在总结一下,方便以后复习 clientHeig ...

  10. 对并发Map的测试

    /** * ConcurrentHashMap效率最高 */ public class MapTest { public static void main(String[] args) throws ...