【洛谷5008】逛庭院(Tarjan,贪心)

题面

洛谷

题解

如果图是一个\(DAG\),我们可以任意选择若干个不是入度为\(0\)的点,然后把它们按照拓扑序倒序删掉,不难证明这样一定是合法的。

现在的问题是出现了\(SCC\),我们缩点之后\(SCC\)形成了一个\(SCC\),我们还是贪心考虑,显然不是入度为\(0\)的\(SCC\)仍然可以类似上面的任意删点,只需要按照\(SCC\)的拓扑序倒序处理,对于入度为\(0\)的\(SCC\),至少要留下一个点,那么这样子就可以判断了。

#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
#define MAX 500500
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
vector<int> E[MAX];
int dfn[MAX],low[MAX],tim,G[MAX],gr,sz[MAX],dg[MAX];
int St[MAX],top;bool ins[MAX];
void Tarjan(int u)
{
dfn[u]=low[u]=++tim;St[++top]=u;ins[u]=true;
for(int v:E[u])
if(!dfn[v])Tarjan(v),low[u]=min(low[u],low[v]);
else if(ins[v])low[u]=min(low[u],dfn[v]);
if(dfn[u]==low[u])
{
int v;++gr;
do{v=St[top--];ins[v]=false;sz[G[v]=gr]++;}while(u!=v);
}
}
int n,m,K,ans,a[MAX],p[MAX];
bool cmp(int x,int y){return a[x]>a[y];}
int main()
{
n=read();m=read();K=read();
for(int i=1;i<=n;++i)a[i]=read(),p[i]=i;
for(int i=1,u,v;i<=m;++i)u=read(),v=read(),E[u].push_back(v);
sort(&p[1],&p[n+1],cmp);
for(int i=1;i<=n;++i)if(!dfn[i])Tarjan(i);
for(int i=1;i<=n;++i)
for(int v:E[i])
if(G[v]!=G[i])dg[G[v]]++;
for(int i=1;i<=gr;++i)sz[i]+=dg[i];
for(int i=1;i<=n&&K;++i)
{
int u=p[i];
if(sz[G[u]]>1)ans+=a[u],--sz[G[u]],--K;
}
printf("%d\n",ans);
return 0;
}

【洛谷5008】逛庭院(Tarjan,贪心)的更多相关文章

  1. 【洛谷P5008 逛庭院】tarjan缩点+贪心

    既然没有题解,那么我就来提供给一份. -- 首先我们看到数据范围.妈耶!数据这么大,一开始还想用个DP来做,但是看着就不行,那么根据这个数据范围,我们大致可以猜到这道题的算法是一个贪心,那么我们怎么贪 ...

  2. [洛谷P1638]逛画展

    [洛谷P1638]逛画展 题目大意: 有\(n(n\le10^6)\)个格子,每个格子有一种颜色.颜色种数为\(m(m\le2000)\).求包含所有颜色的最小区间. 思路: 尺取法裸题. 思路: # ...

  3. 【洛谷 P1667】 数列 (贪心)

    题目链接 对于一个区间\([x,y]\),设这个区间的总和为\(S\) 那么我们在前缀和(设为\(sum[i]\))的意义上考虑到原操作其实就是\(sum[x−1]+=S\) , \(sum[x]+S ...

  4. 洛谷 1262 间谍网络 Tarjan 图论

    洛谷 1262 图论 tarjan 并不感觉把这道题目放在图的遍历中很合适,虽然思路比较简单但是代码还是有点多的,, 将可收买的间谍的cost值设为它的价格,不可购买的设为inf,按照控制关系连图,T ...

  5. 洛谷1417 烹调方案 dp 贪心

    洛谷 1417 dp 传送门 挺有趣的一道dp题目,看上去接近于0/1背包,但是考虑到取每个点时间不同会对最后结果产生影响,因此需要进行预处理 对于物品x和物品y,当时间为p时,先加x后加y的收益为 ...

  6. 洛谷P3953 逛公园(NOIP2017)(最短/长路,拓扑排序,动态规划)

    洛谷题目传送门 又是一年联赛季.NOIP2017至此收官了. 这个其实是比较套路的图论DP了,但是细节有点恶心. 先求出\(1\)到所有点的最短路\(d1\),和所有点到\(n\)的最短路\(dn\) ...

  7. D 洛谷 P3602 Koishi Loves Segments [贪心 树状数组+堆]

    题目描述 Koishi喜欢线段. 她的条线段都能表示成数轴上的某个闭区间.Koishi喜欢在把所有线段都放在数轴上,然后数出某些点被多少线段覆盖了. Flandre看她和线段玩得很起开心,就抛给她一个 ...

  8. luogu5008 逛庭院 (tarjan缩点)

    首先如果这是一个DAG,我按照拓扑序倒着去选,一定能选到所有入度不为0的点 然后考虑有环的情况 我们拎出来一个强连通分量 先假设它缩点以后是没有入度的 那我最后它里面一定至少剩一个不能选 因为就剩一个 ...

  9. 洛谷 P1208混合牛奶【贪心】

    题目描述 由于乳制品产业利润很低,所以降低原材料(牛奶)价格就变得十分重要.帮助Marry乳业找到最优的牛奶采购方案. Marry乳业从一些奶农手中采购牛奶,并且每一位奶农为乳制品加工企业提供的价格是 ...

随机推荐

  1. PHP危险函数

    部分内容转载 https://www.jianshu.com/p/277294c1a9f8 https://www.cnblogs.com/yewooo00/p/7551083.html 信息泄露 1 ...

  2. Linux下部署SSM,通过启动tomcat即可运行

    Linux下部署SSM项目 1. Java环境配置(JRE&JDK) 安装JDK8:sudo yum install java-1.8.0-openjdk 将操作系统配置为默认使用JDK8:s ...

  3. pip安装插件报错。

    报错: Cannot unpack file C:\Windows\TEMP\pip-unpack-4mbfczpj\simple (downloaded from C:\Windows\TEMP\p ...

  4. C++ `endl` 与 `\n` 的区别

    std::cout << std::endl : 插入换行并刷新缓存区 (flush the buffer) std::cout << "\n" : 插入换 ...

  5. Netty服务端Channel的创建与初始化

    Netty创建服务端Channel时,从服务端 ServerBootstrap 类的 bind 方法进入,下图是创建服务端Channel的函数调用链.在后续代码中通过反射的方式创建服务端Channel ...

  6. JS For

    JS For 循环可以将代码块执行指定的次数. JavaScript 循环 document.write(cars[0] + "<br>"); document.wri ...

  7. Django 注意知识点(一)

    本篇概述 Django Admin后台显示 多对多字段(如何) Django 模板 显示 多对多字段(如何) Django 将表单中上传的多对多字段存入数据库 (如何)   Django 上传文件 ( ...

  8. Thymeleaf对象的使用:字符串对象

    Thymeleaf主要使用 org.thymeleaf.expression.Strings 类处理字符串,在模板中使用 #strings 对象来处理字符串. 开发环境:IntelliJ IDEA 2 ...

  9. Data Management Technology(2) -- Data Model

    1.Data Model Model Is the abstraction of real world Reveal the essence of objects, help people to lo ...

  10. C#&.Net干货分享- iTextSharp导出数据源到PDF

    namespace Frame.ITextSharp{    /// <summary>    /// iTextSharp导出数据源到PDF    /// </summary> ...