I. query

  • 比赛时候没有预处理因子疯狂t,其实预处理出来因子是\(O(nlog(n))\)级别的
  • 每个数和他的因子是一对偏序关系,因此询问转化为(l,r)区间每个数的因子在区间(l,r)的个数
  • 预处理出来每个位置上的数所有因子的位置,用可持久化线段树维护,区间询问
#include<bits/stdc++.h>
#define ll long long
#define mk make_pair
#define ft first
#define se second
#define pii pair<int,int>
#define db double
#define ls o<<1
#define rs o<<1|1
#define lowbit(x) (x&-x)
using namespace std;
const int M=1e5+5;
int V[M*200];
int lch[M*200],rch[M*200];
int rt[M],tot=0;
vector<int>fac[M];
int p[M],a[M];
int n,m;
void init(int N){
for(int i=1;i<=N;i++){
for(int j=2*i;j<=N;j+=i)
fac[j].push_back(i);
}
} void upd(int &o,int pre,int l,int r,int p){
o=++tot;
V[o]=V[pre];
lch[o]=lch[pre];
rch[o]=rch[pre];
if(p==0||l==r){
V[o]++;
return ;
}
int mid=(l+r)/2;
if(p<=mid)
upd(lch[o],lch[pre],l,mid,p);
else
upd(rch[o],rch[pre],mid+1,r,p);
V[o]=V[lch[o]]+V[rch[o]];
}
int qy(int o,int pre,int l,int r,int L,int R){
if(!o)
return 0;
if(L<=l&&r<=R)
return V[o]-V[pre];
int mid=(l+r)/2;
int ans=0;
if(L<=mid)
ans+=qy(lch[o],lch[pre],l,mid,L,R);
if(R>mid)
ans+=qy(rch[o],rch[pre],mid+1,r,L,R);
return ans;
}
int main(){
cin>>n>>m;
init(n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
p[a[i]]=i;
}
for(int i=1;i<=n;i++){
upd(rt[i],rt[i-1],1,n,0);
for(auto v:fac[a[i]])
upd(rt[i],rt[i],1,n,p[v]);
}
while(m--){
int l,r;
scanf("%d%d",&l,&r);
printf("%d\n",qy(rt[r],rt[l-1],1,n,l,r));
}
return 0;
}

J. Random Access Iterator

  • 需要计算能成功走到最深节点的概率,对于每个节点,有k次尝试机会,显然计算连续失败k次的概率比较简单

  • \(dp[u]\)代表从u往下走失败的概率,转移为\(dp[u]=(\frac{1}{sz[son]} \Sigma_{son} dp[v])^{sz[son]}\),答案为\(1-dp[root]\)

  • 预处理出来每个节点的高度

  • 树形概率从叶子往上推

M. Longest subsequence

  • 字典序需要严格大于T,意味着下面两种情况满足任一种即可

    • 选出的子序列s只要某一位对应T大,后面的可全选
    • 子序列s所有位和T一样,那么s要比T长
  • 对S贪心,肯定选出的位置越左越好
    • 若S[i]>T[j],则S后面都可以选
    • 若S[i]<T[j],该位不符合要求不能选
    • 若S[i]==T[j],则在S中找到i后面第一个比T[j+1]大的位置更新答案
  • 处理出S[i]后面第一个c可以用序列自动机
#include<bits/stdc++.h>
#define ll long long
#define mk make_pair
#define ft first
#define se second
#define pii pair<int,int>
#define db double
#define ls o<<1
#define rs o<<1|1
#define lowbit(x) (x&-x)
using namespace std;
const int M=1e6+5;
int f[M][27],w[27];
int n,m;
char s[M],t[M];
int main(){
scanf("%d%d",&n,&m);
scanf("%s%s",s,t);
for(int i=0;i<26;i++)
w[i]=-1;
for(int i=n-1;i>=0;i--){
for(int j=0;j<26;j++)
f[i][j]=w[j];
w[s[i]-'a']=i;
}
int ans=-1;
for(int i=t[0]-'a'+1;i<26;i++){
if(f[0][i]>=0){
ans=max(ans,n-f[0][i]);
}
}
int p=0;
for(int i=0;i<n;i++){
if(s[i]<t[p])continue;
if(s[i]>t[p])break;
if(p==m-1){
if(i+1<n)
ans=max(ans,p+1+n-i-1);
break;
}else{
for(int j=t[p+1]-'a'+1;j<26;j++){
if(f[i][j]>=0)
ans=max(ans,p+1+n-f[i][j]);
}
p++;
}
}
cout<<ans<<endl;
return 0;
}

2019徐州网络赛 I J M的更多相关文章

  1. ICPC 2019 徐州网络赛

    ICPC 2019 徐州网络赛 比赛时间:2019.9.7 比赛链接:The Preliminary Contest for ICPC Asia Xuzhou 2019 赛后的经验总结 // 比赛完才 ...

  2. [2019徐州网络赛J题]Random Access Iterator

    题目链接 大致题意:从根节点出发,在节点x有son[x]次等概率进入儿子节点,求到达最深深度的概率.son[x]为x节点的儿子节点个数. 又又又又没做出来,心态崩了. 下来看了官方题解后发觉自己大体思 ...

  3. query 2019徐州网络赛(树状数组)

    query \[ Time Limit: 2000 ms \quad Memory Limit: 262144 kB \] 题意 补题才发现比赛的时候读了一个假题意.... 给出长度为 \(n\) 的 ...

  4. 2019徐州网络赛 H.function

    题意: 先有\(n=p_1^{k_1}p_2^{k_2}\cdots p_m^{k_m}\),定义\(f(n)=k_1+k_2+\cdots+k_m\). 现在计算 \[ \sum_{i=1}^nf( ...

  5. 【树状数组】2019徐州网络赛 query

    (2)首先成倍数对的数量是nlogn级别的,考虑每一对[xL,xR](下标的位置,xL < xR)会对那些询问做出贡献,如果qL <= xL && qR >= xR, ...

  6. 2019徐州网络赛H :function (min25筛)

    题意:f(i)=i的幂次之和. 求(N+1-i)*f(i)之和. 思路:可以推论得对于一个素数p^k,其贡献是ans=(N+1)[N/(P^k)]+P^k(1+2+3...N/(P^k)); 我们分两 ...

  7. 2019徐州网络赛 I.query

    这题挺有意思哈!!!看别人写的博客,感觉瞬间就懂了. 这道题大概题意就是,给一串序列,我们要查找到l-r区间内,满足min(a[ i ],a[ j ]) = gcd(a[ i ],a[ j ]) 其实 ...

  8. 2019 徐州网络赛 center

    题意:n个点,求最小加上几个点让所有点关于一个点(不需要是点集里面的点)中心对称 题解:双重循环枚举,把中点记录一下,结果是n-最大的中点 #include <bits/stdc++.h> ...

  9. The Preliminary Contest for ICPC Asia Xuzhou 2019 徐州网络赛 K题 center

    You are given a point set with nn points on the 2D-plane, your task is to find the smallest number o ...

随机推荐

  1. Docker 私服Registry简介与使用Docker-Compose安装Registry

    场景 Docker-Compose简介与Ubuntu Server 上安装Compose: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/deta ...

  2. Android极致优化

    1.SVG 可缩放矢量图,svg不会跟位图一样因为缩放使图片质量下降,有点在于节约空间与内存,常用语简单的小图标,由xml定义的,根节点为<svg>,在android中通过vector实现 ...

  3. PHP 利用PHPExcel到处数据到Excel;还有导出数据乱码的解决方案。

    直接贴代码吧 PHP版本5.6.38 mysql版本5.0 //连接数据库 $mysql_server_name = "*.*.*.*"; $mysql_username=&quo ...

  4. windows下安装了2个python,如何下载模块到不同的python中

    修改python名称即可,修改Scrpit下的pip名称即可,用不同的名称打开就行 https://www.cnblogs.com/legend-123/p/11195706.html

  5. SQL Server如何找出一个表包含的页信息(Page)

    在SQL Server中,如何找到一张表或某个索引拥有那些页面(page)呢? 有时候,我们在分析和研究(例如,死锁分析)的时候还真有这样的需求,那么如何做呢? SQL Server 2012提供了一 ...

  6. August 11th, 2019. Week 33rd, Sunday

    Worry does not empty tomorrow of its sorrow. It empties today of its strength. 忧虑不会消除明天的痛苦,它只会削弱今天的力 ...

  7. 加权无向图 最小生成树 Prim算法 延迟版和即时版 村里修路该先修哪

    本次要解决的问题是:你们村里那些坑坑洼洼的路,到底哪些路才是主干道? 小明:肯定是哪里都能到得了,并且去哪里都相对比较近,并且被大家共用程度高的路是啊! 具体是哪几条路呢?今天就可以给出准确答案 最小 ...

  8. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3

    A,有多个线段,求一条最短的线段长度,能过覆盖到所又线段,例如(2,4)和(5,6) 那么我们需要4 5连起来,长度为1,例如(2,10)(3,11),用(3,10) 思路:我们想一下如果题目说的是最 ...

  9. js中call、apply、bind到底有什么区别?bind返回的方法还能修改this指向吗?

     壹 ❀ 引 同事最近在看angularjs源码,被源码中各种bind,apply弄的晕头转向:于是他问我,你知道apply,call与bind的区别吗?我说apply与call是函数应用,指定thi ...

  10. python 学习 (1-3)

    流程控制if语句 语法种类:   第⼀种语法: if 条件: #引号是将条件与结果分开. 结果1. # 四个空格,或者⼀个tab键,这个是告诉程序满⾜这个条件的 结果2.   如果条件是真(True) ...