一、信息熵

若一个离散随机变量 \(X\) 的可能取值为 \(X = \{ x_{1}, x_{2},...,x_{n}\}\),且对应的概率为:

\[p(x_{i}) = p(X=x_{i})
\]

那么随机变量 \(X\) 的熵定义为:

\[H(X) = -\sum_{i=1}^{n}p(x_{i})logp(x_{i})
\]

规定当 \(p(x_{i})=0\) 时,\(H(X)=0\)。

通过公式可以看出,若随机变量 \(X\) 的取值等概率分布,即 \(p(x_{i} = p(x_{j}), i \neq j\) 时,\(H(X)\) 最大。

直观理解:信息熵表达的时随机变量 \(X\) 所含的信息量,当 \(X\) 中所有取值都等概率时,包含的信息量就越多,就需要用更多的信息来描述它。如果知道了 \(X\) 中取哪个值概率最大,那么描述它所需要的信息就越少,\(H(X)\) 就越小。换句话说,信息熵表明了信息的无序状态。

二、交叉熵

交叉熵定义为用模拟分布 \(q\) 来编码真实分布 \(p\) 所需要的平均编码长度比特个数:

\[H(p,q) = \sum_{i=1}^{n}p_{i}log\dfrac{1}{q_{i}} = -\sum_{i=1}^{n}p_{i}q_{i}
\]

拿一个三分类问题举例,加入标签通过 one-hot 编码后的目标为 \([1,0,0]\),那么当预测完全准确时,模拟分布 \(q\) 的熵为:

\[H(q) = -\sum_{i=1}^{n}q_{i}log(q_{i}) = -(1 \times log 1 + 0 \times log 0 + 0 \times log(0)) = 0
\]

因此,在使用交叉熵作为损失函数执行分类任务时,通常使目标函数趋近于0。加入模型预测出来的结果为:\(p = [0.7, 0.2, 0.1]\),那么 \(p, q\) 的交叉熵为:

\[H(p,q) = -\sum_{i=1}^{n}p_{i}log(q_{i}) = -(1 \times log (0.7) + 0 \times log (0.2) + 0 \times log(0.1)) = -log(0.7)
\]

为什么在分类任务中多用交叉熵而不是MSE作为损失函数?我们以二分类问题为例来解释这个问题。假设训练数据集为:\(T = \{ (x_{1},y_{1}),(x_{2},y_{2}),...,(x_{n},y_{n})\}\),其中 \(y_{i} \in \{0,1\}\)。网络的输出为:\(z = w^{T}x\),标签为 \(p = \{1,0\}\)。于是最后对网络所预测的概率值为:\(q = \sigma(z)\),其中 \(\sigma()\) 代表 sigmoid 激活函数:

\[\sigma(z) = \dfrac{1}{1+e^{-z}}\quad\sigma'(z) = \sigma(z)(1-\sigma(z))
\]

若使用 MSE 作为损失函数,则:

\[L = \dfrac{1}{2}||q-p||^{2} \\
\dfrac{\partial L}{\partial w} = \dfrac{\partial L}{\partial q} \times \dfrac{\partial q}{\partial z} \times \dfrac{\partial z}{\partial w} = (q-p)\sigma'(z)x = (q-p)\sigma(z)(1-\sigma(z))x
\]

而使用交叉熵作为损失函数,则:

\[L = -\sum_{i=1}^{n}p_{i}ln(q_{i}) = -(pln(q)+(1-p)ln(1-q))\\
\dfrac{\partial L}{\partial w} = \dfrac{\partial L}{\partial q} \times \dfrac{\partial q}{\partial z} \times \dfrac{\partial z}{\partial w} = (-\dfrac{p}{q}+\dfrac{1-p}{1-q})\sigma'(z)x = (q-p)x
\]

对比之下发现,由于sigmoid 函数在输出接近0和1时,梯度很小,而使用 MSE 做损失函数时模型参数w会更新的比较慢,因此分类问题多采用交叉熵作为损失函数。

个人认为,使用交叉熵而不是用MSE的另一个原因在于,交叉熵损失函数的理想分类结果只与正确样本有关,而MSE损失函数与正误样本都有关系。

三、相对熵(\(KL\)散度)

相对熵用来表示两个概率分布的差异,它表示2个函数或概率分布的差异性:差异越大则相对熵越大,差异越小则相对熵越小,特别地,若2者相同则熵为0。公式表示如下:

\[D_{KL}(p||q) = -\sum_{i=1}^{n}p(x_{i})log(\dfrac{p(x_{i})}{q(x_{i}))} = H(p,q)-H(p)
\]

于是,相对熵=交叉熵-信息熵。而在有监督的机器学习和深度学习中,往往已经有了真实的样本(随机变量)和标签(label),因此可以理解为实际的概率分布 \(p\) 已知,而训练所得到的分布为 \(q\),那么信息熵 \(H_{p}\) 相当于常量,所以可以直接用交叉熵 \(H(p,q)\) 来衡量两个独立概率分布的差异。

信息熵,交叉熵与KL散度的更多相关文章

  1. 深度学习中交叉熵和KL散度和最大似然估计之间的关系

    机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...

  2. 【机器学习基础】熵、KL散度、交叉熵

    熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择 ...

  3. [ML]熵、KL散度、信息增益、互信息-学习笔记

    [ML]熵.KL散度.信息增益.互信息-学习笔记 https://segmentfault.com/a/1190000000641079

  4. 机器学习、深度学习中的信息熵、相对熵(KL散度)、交叉熵、条件熵

    信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作<A Mathematical Theory of Communication>中提出的.如今 ...

  5. 熵(Entropy),交叉熵(Cross-Entropy),KL-松散度(KL Divergence)

    1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类 ...

  6. [转]熵(Entropy),交叉熵(Cross-Entropy),KL-松散度(KL Divergence)

    https://www.cnblogs.com/silent-stranger/p/7987708.html 1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练 ...

  7. 信息论相关概念:熵 交叉熵 KL散度 JS散度

    目录 机器学习基础--信息论相关概念总结以及理解 1. 信息量(熵) 2. KL散度 3. 交叉熵 4. JS散度 机器学习基础--信息论相关概念总结以及理解 摘要: 熵(entropy).KL 散度 ...

  8. 从香农熵到手推KL散度

    信息论与信息熵是 AI 或机器学习中非常重要的概念,我们经常需要使用它的关键思想来描述概率分布或者量化概率分布之间的相似性.在本文中,我们从最基本的自信息和信息熵到交叉熵讨论了信息论的基础,再由最大似 ...

  9. KL散度相关理解以及视频推荐

    以下内容基于对[中字]信息熵,交叉熵,KL散度介绍||机器学习的信息论基础这个视频的理解,请务必先看几遍这个视频. 假设一个事件可能有多种结果,每一种结果都有其发生的概率,概率总和为1,也即一个数据分 ...

随机推荐

  1. Scrum Meeting 4

    Basic Info where:共享空间 when:2021/4/29 target: 简要汇报一下已完成任务,下一步计划与遇到的问题 Progress Team Member Position A ...

  2. 程序时间计算函数(被tle出阴影来了)

    初次意识到程序的时间复杂度(tle多了 ) 第一次写博客(被大佬们的博客所折服orz) 拿打素数表的程序为例 优化前代码: #include<iostream> #include<c ...

  3. golang:并发编程总结

    并行和并发 并发编程是指在一台处理器上"同时"处理多个任务. 宏观并发:在一段时间内,有多个程序在同时运行. 微观并发:在同一时刻只能有一条指令执行,但多个程序指令被快速的轮换执行 ...

  4. font

    font属性简写 front: font-style font-variant font-weight font-size/line-height font-family 说明: 值之间空格隔开 注意 ...

  5. [bug] kafka启动报错 could not be established. Broker may not be available.

    原因 配置文件和命令行中的主机名不一致,建议都用ip地址 参考 https://blog.csdn.net/getyouwant/article/details/79000524

  6. [Python] Python工匠(Github)

    1.善用变量来改变代码质量 变量命名 变量要有描述性,不能太宽泛 BAD:day, host, cards, temp GOOD:day_of_week, hosts_to_reboot, expir ...

  7. 服务器硬件必须支持M2 或PCIE才能支持NVME

    兆芯服务器不支持NVME. 服务器硬件必须支持M2 或PCIE才能支持NVME.1 因为物理接口只有M2 SATA 和PCIE这三中但是NVME只支持M2 和PCIE这2种2所以 NVME不支持SAT ...

  8. dmesg -w 查看硬件参数

    dmesg -w 查看硬件参数 14,笔记本硬件问题,使用dmesg -w可以看到,内核不断受到硬件过来的热插拔信号

  9. mysql集群无法启动成功

    场景:两台数据库运行一段时间后发现集群挂了,一台服务正常,一台不正常. 日志如下: [ERROR] InnoDB: Attempted to open a previously opened tabl ...

  10. 基于多主机的Web服务

    [Centos7.4版本] !!!测试环境我们首关闭防火墙和selinux [root@localhost ~]# systemctl stop firewalld [root@localhost ~ ...