【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp
题目描述
Bessie is planning the annual Great Cow Gathering for cows all across the country and, of course, she would like to choose the most convenient location for the gathering to take place.
Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会。当然,她会选择最方便的地点来举办这次集会。
Each cow lives in one of N (1 <= N <= 100,000) different barns (conveniently numbered 1..N) which are connected by N-1 roads in such a way that it is possible to get from any barn to any other barn via the roads. Road i connects barns A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has length L_i (1 <= L_i <= 1,000). The Great Cow Gathering can be held at any one of these N barns. Moreover, barn i has C_i (0 <= C_i <= 1,000) cows living in it.
每个奶牛居住在 N(1<=N<=100,000) 个农场中的一个,这些农场由N-1条道路连接,并且从任意一个农场都能够到达另外一个农场。道路i连接农场A_i和B_i(1 <= A_i <=N; 1 <= B_i <= N),长度为L_i(1 <= L_i <= 1,000)。集会可以在N个农场中的任意一个举行。另外,每个牛棚中居住者C_i(0 <= C_i <= 1,000)只奶牛。
When choosing the barn in which to hold the Cow Gathering, Bessie wishes to maximize the convenience (which is to say minimize the inconvenience) of the chosen location. The inconvenience of choosing barn X for the gathering is the sum of the distances all of the cows need to travel to reach barn X (i.e., if the distance from barn i to barn X is 20, then the travel distance is C_i*20). Help Bessie choose the most convenient location for the Great Cow Gathering.
在选择集会的地点的时候,Bessie希望最大化方便的程度(也就是最小化不方便程度)。比如选择第X个农场作为集会地点,它的不方便程度是其它牛棚中每只奶牛去参加集会所走的路程之和,(比如,农场i到达农场X的距离是20,那么总路程就是C_i*20)。帮助Bessie找出最方便的地点来举行大集会。
Consider a country with five barns with [various capacities] connected by various roads of varying lengths. In this set of barns, neither barn 3 nor barn 4 houses any cows.
1 3 4 5
@—1—@—3—@—3—@[2]
[1] |
2 | @[1] 2 Bessie can hold the Gathering in any of five barns; here is the table of inconveniences calculated for each possible location:
Gather ——- Inconvenience ———
Location B1 B2 B3 B4 B5 Total
1 0 3 0 0 14 17
2 3 0 0 0 16 19
3 1 2 0 0 12 15
4 4 5 0 0 6 15
5 7 8 0 0 0 15
If Bessie holds the gathering in barn 1, then the inconveniences from each barn are:
Barn 1 0 — no travel time there!
Barn 2 3 — total travel distance is 2+1=3 x 1 cow = 3 Barn 3 0 — no cows there!
Barn 4 0 — no cows there!
Barn 5 14 — total travel distance is 3+3+1=7 x 2 cows = 14 So the total inconvenience is 17.
The best possible convenience is 15, achievable at by holding the Gathering at barns 3, 4, or 5.
输入输出格式
输入格式:
Line 1: A single integer: N
Lines 2..N+1: Line i+1 contains a single integer: C_i
Lines N+2..2*N: Line i+N+1 contains three integers: A_i, B_i, and L_i
第一行:一个整数 N 。
第二到 N+1 行:第 i+1 行有一个整数 C_i
第 N+2 行到 2*N 行:第 i+N+1 行为 3 个整数:A_i,B_i 和 L_i。
输出格式:
- Line 1: The minimum inconvenience possible
第一行:一个值,表示最小的不方便值。
输入输出样例
输入样例#1: 复制
5
1
1
0
0
2
1 3 1
2 3 2
3 4 3
4 5 3
输出样例#1: 复制
15
思路
树型dp
同 Luogu p3478 [POI2008]STA-Station (简化版)
- 同样是先算出以1为聚会点时的答案,再通过递推求得其儿子节点的答案,在由其儿子节点的答案推得再下一层的子节点答案…….
① 假设所有的牛以1为聚会点,求出此时的答案
② 当以3为聚会点时,3号节点以及他子树上的节点都需要退回1->3的路径的长度
除了3号节点以及他子树上的节点都需要前进1->3的路径的长度
得到递推式$f[v]=f[u]-q[v]*dis+(sum-q[v])*dis$ 其中q[i]表示节点i上的牛的数量
代码
#include<cmath>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#define maxn 200100
#define ll long long
#define re register int
using namespace std;
inline ll read(){
int x=0,w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x*w;
}
ll dis[maxn],c[maxn],q[maxn],f[maxn],sum; //q[]子树上的节点总数
ll Ans=2147483647;
struct data {
ll v,next,w;
}e[maxn]; ll h[maxn],tot=1,n;
inline void Add(ll u,ll v,ll w) {
e[tot].v=v;
e[tot].next=h[u];
e[tot].w=w;
h[u]=tot++;
}
ll DFS(ll u,ll fa) {
ll tot=0;
for(register ll i=h[u];i;i=e[i].next) {
ll v=e[i].v;
if(v!=fa) {
ll s=DFS(v,u);
dis[u]+=dis[v]+e[i].w*s;
tot+=s;
}
}
return q[u]=tot+c[u];
} void dfs(ll u,ll fa) {
for(register ll i=h[u];i;i=e[i].next) {
ll v=e[i].v;
if(v!=fa) {
ll tmp=e[i].w;
f[v]=f[u]-q[v]*tmp+(sum-q[v])*tmp; //f[]表示从1为根节点到v为根节点需要变化的步数
dfs(v,u);
}
}
} int main(){
n=read();
for(register ll i=1;i<=n;++i) c[i]=read();
for(register ll i=1;i<=n;++i) sum+=c[i];
for(register ll i=1;i<n;++i) {
ll u=read(),v=read(),w=read();
Add(u,v,w);
Add(v,u,w);
}
DFS(1,1);
dfs(1,1);
for(register ll i=1;i<=n;++i) Ans=min(Ans,f[i]);
cout<<Ans+dis[1]<<endl;
return 0;
}
【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp的更多相关文章
- LUOGU P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…
传送门 解题思路 首先第一遍dfs预处理出每个点的子树的siz,然后可以处理出放在根节点的答案,然后递推可得其他答案,递推方程 sum[u]=sum[x]-(val[i]*siz[u])+(siz[1 ...
- 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- [洛谷P2986][USACO10MAR]伟大的奶牛聚集Great Cow Gat…
题目大意:给你一棵树,每个点有点权,边有边权,求一个点,使得其他所有点到这个点的距离和最短,输出这个距离 题解:树形$DP$,思路清晰,转移显然 卡点:无 C++ Code: #include < ...
- [USACO10MAR]伟大的奶牛聚集Great Cow Gat…【树形dp】By cellur925
题目传送门 首先这道题是在树上进行的,然后求最小的不方便程度,比较符合dp的性质,那么我们就可以搞一搞树形dp. 设计状态:f[i]表示以i作为聚集地的最小不方便程度.那么我们还需要各点间的距离,但是 ...
- [USACO10MAR]伟大的奶牛聚集Great Cow Gat…
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- [USACO10MAR]伟大的奶牛聚集Great Cow Gat… ($dfs$,树的遍历)
题目链接 Solution 辣鸡题...因为一个函数名看了我贼久. 思路很简单,可以先随便指定一个根,然后考虑换根的变化. 每一次把根从 \(x\) 换成 \(x\) 的一个子节点 \(y\),记录一 ...
- 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集(树形动规)
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- P2986 [USACO10MAR]伟大的奶牛聚集(思维,dp)
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
随机推荐
- 纯vue3实现的svg可视化web组态编辑器。主要用于物联网mqtt实时系统图
vue就是边做这个项目边学的 代码可能有点乱 还望各位大神勿喷 如果代码对您有帮助 麻烦辛苦帮我点个star 预览地址 https://svg.yaolunmao.top 如何使用 # 克隆项目 gi ...
- HEVC学习(一) —— HM的使用
http://blog.csdn.net/hevc_cjl/article/details/8169182 首先自然是先把这个测试模型下载下来,链接地址如下:https://hevc.hhi.frau ...
- 消息队列RabbitMQ(五):死信队列与延迟队列
死信队列 引言 死信队列,英文缩写:DLX .Dead Letter Exchange(死信交换机),其实应该叫做死信交换机才更恰当. 当消息成为Dead message后,可以被重新发送到另一个交换 ...
- [设计模式] 设计模式课程(二十)--命令模式(Command)
概述 "行为变化"模式:组件构建过程中,组件行为的变化经常会导致组件本身剧烈的变化."行为变化"模式将组件的行为和组件本身进行解耦,从而支持组件行为的变化,实现 ...
- 【转载】Windows 10系统默认将画面显示比例调整至125%或150%,最高分辨率已经达到3840×2160(4K)这一级别。
高分屏打开软件界面模糊?不会设置太浪费 2017-08-31 19:37 抹又重彩 现在有好多朋友都喜欢并买了高分屏笔记本电脑.高分屏笔记本就是配有高分辨率屏幕的笔记本.为了给用户带来更好的视觉体验, ...
- shell练习(1)创建100个用户
shell练习(1)创建100个用户 默默努力的小白. 2020-04-15 16:28:49 49 收藏文章标签: linuxshell版权随机创建100个用户,并生成随机密码,并将密码放入一个文件 ...
- CentOS6.7系统文本安装-2020
CentOS6.7系统文本安装 [日期:2016-01-30] 来源:Linux社区 作者:endmoon [字体:大 中 小] 一.选择虚拟机软件 1)VMware Workstation ...
- liveCD版: CD光盘映像,和liveDVD一样,唯一的区别就是该版本中包含的软件包会少一点,安装系统时使用 U 盘或者CD光盘进行安装。
https://man.linuxde.net/download/CentOS/ CentOS,英文全称"Community Enterprise Operating System" ...
- Linux基础命令学习记录(一)
使用频繁的Linux命令 一.文件和目录 1.cd命令 cd / 进入根目录 cd .. 返回上一级目录 cd ../.. 返回上两级目录 cd 进入个人的主目录 cd ~ 进入个人的主目录 cd - ...
- 西门子S7系列以太网通讯处理器安装调式操作
北京华科远创科技有限研发的远创智控ETH-YC模块,PLC转以太网型号有MPI-ETH-YC01和MPI-ETH-YC01,适用于西门子S7-200/S7-300/S7-400.SMART S7-20 ...