Given an undirected tree consisting of n vertices numbered from 0 to n-1, which has some apples in their vertices. You spend 1 second to walk over one edge of the tree. Return the minimum time in seconds you have to spend in order to collect all apples in the tree starting at vertex 0 and coming back to this vertex.

The edges of the undirected tree are given in the array edges, where edges[i] = [fromi, toi] means that exists an edge connecting the vertices fromi and toi. Additionally, there is a boolean array hasApple, where hasApple[i] = true means that vertex i has an apple, otherwise, it does not have any apple.

Example 1:

Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,true,false,true,true,false]
Output: 8
Explanation: The figure above represents the given tree where red vertices have an apple. One optimal path to collect all apples is shown by the green arrows.

Example 2:

Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,true,false,false,true,false]
Output: 6
Explanation: The figure above represents the given tree where red vertices have an apple. One optimal path to collect all apples is shown by the green arrows.

Example 3:

Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,false,false,false,false,false]
Output: 0

Constraints:

  • 1 <= n <= 10^5
  • edges.length == n-1
  • edges[i].length == 2
  • 0 <= fromi, toi <= n-1
  • fromi < toi
  • hasApple.length == n

题意:

  给出一棵树,树中某些节点有苹果,求从根节点出发,将所有的苹果收集完,并返回根节点所需的步数。

思路:

  这是一道DFS的题目,可以把树看成是一个图,然后用DFS遍历图,记录下遍历所需的步数,因为需要返回所以在寻找苹果的过程中,应该将所需的步数 * 2 。这里我们用递归的方法来遍历树,如果子树中没有苹果,则这条遍历路径的步数应该置为0. 否则将遍历到该点所需的步数累加到总步数中。

Code:

 1 class Solution {
2 public:
3 vector<vector<int> > grap;
4
5 int DFS(int index, int mySteps, vector<bool>& hasApple) {
6 int childrenSteps = 0;
7 for (int i : grap[index]) {
8 childrenSteps += DFS(i, 2, hasApple);
9 }
10 if (childrenSteps == 0 && hasApple[index] == false)
11 return 0;
12 return childrenSteps + mySteps;
13
14 }
15 int minTime(int n, vector<vector<int>>& edges, vector<bool>& hasApple) {
16 grap.resize(n + 1);
17 for (int i = 0; i < edges.size(); ++i)
18 grap[edges[i][0]].push_back(edges[i][1]);
19 return DFS(0, 0, hasApple);
20 }
21 };

参考:

  https://leetcode.com/problems/minimum-time-to-collect-all-apples-in-a-tree/discuss/623673/C%2B%2B-Java-Detailed-explanation-with-a-Picture-for-visualization

1443. Minimum Time to Collect All Apples in a Tree的更多相关文章

  1. Range Minimum Query and Lowest Common Ancestor

    作者:danielp 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAnc ...

  2. hdu多校第4场 B Harvest of Apples(莫队)

    Problem B. Harvest of Apples Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Su ...

  3. Problem B. Harvest of Apples HDU - 6333(莫队)

    Problem Description There are n apples on a tree, numbered from 1 to n.Count the number of ways to p ...

  4. hdu 6406 Taotao Picks Apples 线段树 单点更新

    Taotao Picks Apples Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Ot ...

  5. [乱搞]hdu 6406 Taotao picks apples 笛卡尔树+倍增

    题目链接 Problem Description There is an apple tree in front of Taotao's house. When autumn comes, n app ...

  6. 2018 Multi-University Training Contest 4 Problem B. Harvest of Apples 【莫队+排列组合+逆元预处理技巧】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6333 Problem B. Harvest of Apples Time Limit: 4000/200 ...

  7. Problem B. Harvest of Apples 莫队求组合数前缀和

    Problem Description There are n apples on a tree, numbered from 1 to n.Count the number of ways to p ...

  8. HDU - 6333:Harvest of Apples (组合数前缀和&莫队)

    There are n n apples on a tree, numbered from 1 1 to n n . Count the number of ways to pick at most ...

  9. Harvest of Apples

    问题 B: Harvest of Apples 时间限制: 1 Sec  内存限制: 128 MB提交: 18  解决: 11[提交] [状态] [讨论版] [命题人:admin] 题目描述 Ther ...

随机推荐

  1. wxWidgets源码分析(6) - 窗口关闭过程

    目录 窗口关闭过程 调用流程 关闭文档 删除视图 删除文档对象 关闭Frame App清理 多文档窗口的关闭 多文档父窗口关闭 多文档子窗口关闭 窗口的正式删除 窗口关闭过程总结 如何手工删除view ...

  2. FreeBSD 13 显卡支持

    On FreeBSD 13, using drm-devel-kmod, support is the same as on Linux 5.4. This includes support for ...

  3. Java传参:值传递 or 引用传递 ?

    刚开始学Java的时候一度以为:基本数据类型是值传递,引用类型是引用传递.新人很容易在这两个概念上面被搞糊涂,后来看了Hollis的文章才明白了Java中只有值传递. 接下来我能用简单明了的方式来说明 ...

  4. Linux目录,rpm及top,vi命令简记

    一次简单的Linux常用操作记录 一.一些Linux目录结构 /bin 存放二进制可执行文件(ls.cat.mkdir等),一些常用的命令一般都在这里. /etc 存放系统管理和配置文件 /home ...

  5. python 画图中文显示问题

    在python文件当前目录下添加simsun.ttc(资源网上下载即可,有很多) 代码如下: plt.title("标题", fontproperties='SimHei', si ...

  6. requirejs的用法

    requirejs的用法 2014年11月6日 17164次浏览 之前我的一片文章介绍过requirejs,具体地址是:http://www.haorooms.com/post/RequireJS_m ...

  7. Python打包之setuptools

    参考链接1 参考链接2 参考链接3 一.setuptools介绍 Setuptools是Python Distutils的加强版,使开发者构建和发布Python包更加容易,特别是当包依赖于其他包时.用 ...

  8. PTA 带头结点的链式表操作集

    6-2 带头结点的链式表操作集 (20 分)   本题要求实现带头结点的链式表操作集. 函数接口定义: List MakeEmpty(); Position Find( List L, Element ...

  9. 攻防世界 reverse re4-unvm-me

    re4-unvm-me alexctf-2017 pyc文件,祭出大杀器EasyPythonDecompiler.exe 得到源代码: 1 # Embedded file name: unvm_me. ...

  10. Android学习之CoordinatorLayout+FloatingActionButton+Snackbar

    CoordinatorLayout •简介 CoordinatorLayout 协调布局,可以理解为功能更强大的 FrameLayout 布局: 它在普通情况下作用和 FrameLayout 基本一致 ...