不妨假设$x\le y$,可以通过翻转整个格子序列来调整

令$a_{i}$​​为$i$​​到$y$​​的期望步数,显然有方程$a_{i}=\begin{cases}0&(i=y)\\\frac{\sum_{j=i+1}^{n}a_{j}}{n-i}+1&(i<y)\\\frac{\sum_{j=1}^{i-1}a_{j}}{i-1}+1&(i>y)\end{cases}$​​​

将其写成递推的形式,即
$$
\forall 1\le i\le y-2,a_{i}=\frac{n-i-1}{n-i}(a_{i+1}-1)+\frac{1}{n-i}a_{i+1}+1=a_{i+1}+\frac{1}{n-i}
$$
进一步的,即有$a_{i}=a_{y-1}+\sum_{j=i}^{y-2}\frac{1}{n-j}$​​,代入$a_{y+1}$的式子即
$$
a_{y+1}=\frac{\sum_{i=1}^{y}a_{i}}{y}+1=\frac{a_{y-1}+\sum_{i=1}^{y-2}(a_{y-1}+\sum_{j=i}^{y-2}\frac{1}{n-j})}{y}+1=k_{1}a_{y-1}+C_{1}
$$
(其中$k_{1}=\frac{y-1}{y},C_{1}=\frac{\sum_{i=1}^{y-2}\sum_{j=i}^{y-2}\frac{1}{n-j}}{y}+1$​​​,显然为常数,且不难​​预处理得到)

类似地,也可以得到$a_{y-1}=\frac{n-y}{n-y+1}a_{y+1}+\frac{\sum_{i=y+2}^{n}\sum_{j=y+2}^{i}\frac{1}{j-1}}{n-y+1}+1$​​(同样记为$a_{y-1}=k_{2}a_{y+1}+C_{2}$​)​​

将前者代入后者,即$a_{y-1}=k_{2}(k_{1}a_{y-1}+C_{1})+C_{2}$​​​​​​,解得$a_{y-1}=\frac{k_{2}C_{1}+C_{2}}{1-k_{1}k_{2}}$​​,将$k_{1}$​​和$k_{2}$​​的式子代入,不难得到$1-k_{1}k_{2}=\frac{n}{y(n-y+1)}$​​​

再根据前面,也即有答案$a_{x}=\frac{y(n-y+1)(k_{2}C_{1}+C_{2})}{n}+\sum_{i=x}^{y-2}\frac{1}{n-i}$(注意特判$x=y$和$y=n$)

综上,$o(n)$​​​​​预处理后即可$o(1)$​​​​​计算,时间复杂度为$o(n+T)$​​​​​

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 2000005
4 #define mod 1000000007
5 #define ll long long
6 int t,n,x,y,ans,inv[N],S1[N],S2[N];
7 int main(){
8 inv[0]=inv[1]=S1[0]=S2[0]=1;
9 for(int i=2;i<N;i++)inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
10 for(int i=1;i<N;i++)S1[i]=(S1[i-1]+inv[i])%mod;
11 for(int i=1;i<N;i++)S2[i]=(S2[i-1]+S1[i])%mod;
12 scanf("%d",&t);
13 while (t--){
14 scanf("%d%d%d",&n,&x,&y);
15 if (x>y)x=n-x+1,y=n-y+1;
16 if (x==y){
17 printf("0\n");
18 continue;
19 }
20 if (y==n){
21 printf("%d\n",(1+S1[n-x]-S1[n-y+1]+mod)%mod);
22 continue;
23 }
24 int k1=(ll)(y-1)*inv[y]%mod,k2=(ll)(n-y)*inv[n-y+1]%mod;
25 int C1=((S2[n-1]-S2[n-y+1]+mod)%mod-(ll)(y-2)*S1[n-y+1]%mod+mod)%mod;
26 int C2=((S2[n-1]-S2[y]+mod)%mod-(ll)(n-y-1)*S1[y]%mod+mod)%mod;
27 C1=((ll)C1*inv[y]+1)%mod,C2=((ll)C2*inv[n-y+1]+1)%mod;
28 ans=(ll)y*(n-y+1)%mod*(((ll)k2*C1+C2)%mod)%mod*inv[n]%mod;
29 ans=(ans+(S1[n-x]-S1[n-y+1]+mod)%mod)%mod;
30 printf("%d\n",ans);
31 }
32 return 0;
33 }

[hdu7000]二分的更多相关文章

  1. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  2. BZOJ 2756: [SCOI2012]奇怪的游戏 [最大流 二分]

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3352  Solved: 919[Submit][Stat ...

  3. 整体二分QAQ

    POJ 2104 K-th Number 时空隧道 题意: 给出一个序列,每次查询区间第k小 分析: 整体二分入门题? 代码: #include<algorithm> #include&l ...

  4. [bzoj2653][middle] (二分 + 主席树)

    Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序列s. 回答Q个这样的询问:s的左端点在[a,b ...

  5. [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  6. [LeetCode] Closest Binary Search Tree Value 最近的二分搜索树的值

    Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...

  7. jvascript 顺序查找和二分查找法

    第一种:顺序查找法 中心思想:和数组中的值逐个比对! /* * 参数说明: * array:传入数组 * findVal:传入需要查找的数 */ function Orderseach(array,f ...

  8. BZOJ 1305: [CQOI2009]dance跳舞 二分+最大流

    1305: [CQOI2009]dance跳舞 Description 一次舞会有n个男孩和n个女孩.每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞.每个男孩都不会和同一个女孩跳两首(或更多)舞曲 ...

  9. BZOJ 3110 [Zjoi2013]K大数查询 ——整体二分

    [题目分析] 整体二分显而易见. 自己YY了一下用树状数组区间修改,区间查询的操作. 又因为一个字母调了一下午. 貌似树状数组并不需要清空,可以用一个指针来维护,可以少一个log 懒得写了. [代码] ...

随机推荐

  1. equals之List

    School类 package com.collection.equals; /* * 定义一个学校类 相当于一个学校模板 * 状态: 1.学校id 2.学校名称 * */ public class ...

  2. Blazor Webassembly多标签页开发

    最近准备用Blazor Webassembly做后台开发要用到多标签页,找了半天发现绝大多数都是Blazor Server的多标签没有Webassembly.没办法只能自己想办法造轮子了. 查了许多资 ...

  3. 详解package-lock.json的作用

    目录 详解package-lock.json package-lock.json的作用 版本号的定义规则与前缀对安装的影响 改动package.json后依旧能改变项目依赖的版本 当前项目的真实版本号 ...

  4. 干货 | 数据为王,携程国际火车票的 ShardingSphere 之路

    以下文章来源于携程技术 ,作者瑞华 作者简介 瑞华,携程高级后端开发工程师,关注系统架构.分库分表.微服务.高可用等. 一.前言 随着国际火车票业务的高速发展,订单量快速增长,单数据库瓶颈层面的问题逐 ...

  5. CQOI2021 退役记

    Day -1 晚上去了酒店然后就睡觉了. Day 1 进考场之前互相奶. 进了考场之后看题,发现T1很水(伏笔1,然后直接开始写 \(\Theta(n\log^2n)\)(二分+动态开点线段树),调了 ...

  6. 安卓开发——WebView+Recyclerview文章详情页,解决高度问题

    安卓开发--WebView+Recyclerview文章详情页,解决高度问题 最近在写一个APP时,需要显示文章详情页,准备使用WebView和RecyclerView实现上面文章,下面评论.出现了W ...

  7. SpringCloud-初见

    目录 前言 微服务概述 微服务与微服务架构 微服务优缺点 微服务技术栈 为什么选择SpringCloud作为微服务架构 SpringCloud入门 SpringCloud和SpringBoot的关系 ...

  8. 你知道什么是JUC了吗?

    多线程一直Java开发中的难点,也是面试中的常客,趁着还有时间,打算巩固一下JUC方面知识,我想机会随处可见,但始终都是留给有准备的人的,希望我们都能加油!!! 沉下去,再浮上来,我想我们会变的不一样 ...

  9. LeetCode:堆专题

    堆专题 参考了力扣加加对与堆专题的讲解,刷了些 leetcode 题,在此做一些记录,不然没几天就忘光光了 力扣加加-堆专题(上) 力扣加加-堆专题(下) 总结 优先队列 // 1.java中有优先队 ...

  10. OO电梯作业总结

    (一)第五次作业 一.设计思路 生产消费者模型,输入接口是producer,调度器是tray,电梯是customer.由于只有一架电梯,所以生产消费模型满足以下条件: 一个生产者,一个消费者 托盘不为 ...