A.mat[0][0] = 1, A.mat[0][1] = 1, A.mat[0][2] = 0, A.mat[0][3] = 0, A.mat[0][4] = 0;
A.mat[1][0] = 0, A.mat[1][1] = AX*BX%Mod, A.mat[1][2] = AX*BY%Mod, A.mat[1][3] = AY*BX%Mod, A.mat[1][4] = AY*BY%Mod;
A.mat[2][0] = 0, A.mat[2][1] = 0, A.mat[2][2] = AX, A.mat[2][3] = 0, A.mat[2][4] = AY;
A.mat[3][0] = 0, A.mat[3][1] = 0, A.mat[3][2] = 0, A.mat[3][3] = BX, A.mat[3][4] = BY;
A.mat[4][0] = 0, A.mat[4][1] = 0, A.mat[4][2] = 0, A.mat[4][3] = 0, A.mat[4][4] = 1;

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long ll;
const ll Mod = 1e9 + 7;
const int N = 6;
int msize; struct Mat
{
ll mat[N][N];
}; Mat operator *(Mat a, Mat b)
{
Mat c;
memset(c.mat, 0, sizeof(c.mat));
for(int k = 0; k < msize; ++k)
for(int i = 0; i < msize; ++i)
if(a.mat[i][k])
for(int j = 0; j < msize; ++j)
if(b.mat[k][j])
c.mat[i][j] = (a.mat[i][k] * b.mat[k][j] + c.mat[i][j])%Mod;
return c;
} Mat operator ^(Mat a, ll k)
{
Mat c;
memset(c.mat,0,sizeof(c.mat));
for(int i = 0; i < msize; ++i)
c.mat[i][i]=1;
for(; k; k >>= 1)
{
if(k&1) c = c*a;
a = a*a;
}
return c;
} int main()
{
ll n,A0,B0,AX,AY,BX,BY;
msize = 5;
while(~scanf("%I64d",&n))
{
scanf("%I64d%I64d%I64d", &A0, &AX, &AY);
scanf("%I64d%I64d%I64d", &B0, &BX, &BY);
if(n==0)
{
puts("0");
continue;
}
Mat A;
A.mat[0][0] = 1, A.mat[0][1] = 1, A.mat[0][2] = 0, A.mat[0][3] = 0, A.mat[0][4] = 0;
A.mat[1][0] = 0, A.mat[1][1] = AX*BX%Mod, A.mat[1][2] = AX*BY%Mod, A.mat[1][3] = AY*BX%Mod, A.mat[1][4] = AY*BY%Mod;
A.mat[2][0] = 0, A.mat[2][1] = 0, A.mat[2][2] = AX, A.mat[2][3] = 0, A.mat[2][4] = AY;
A.mat[3][0] = 0, A.mat[3][1] = 0, A.mat[3][2] = 0, A.mat[3][3] = BX, A.mat[3][4] = BY;
A.mat[4][0] = 0, A.mat[4][1] = 0, A.mat[4][2] = 0, A.mat[4][3] = 0, A.mat[4][4] = 1;
A = A^(n);
ll AoD1 = A0*B0%Mod;
printf("%I64d\n",(A.mat[0][1]*AoD1%Mod + A.mat[0][2]*A0%Mod + A.mat[0][3]*B0%Mod + A.mat[0][4])%Mod);
}
return 0;
}

hdu 4686 Arc of Dream 自己推 矩阵快速幂的更多相关文章

  1. HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  2. HDU 4686 Arc of Dream(递归矩阵加速)

    标题效果:你就是给你一程了两个递推公式公式,第一个让你找到n结果项目. 注意需要占用该公式的复发和再构造矩阵. Arc of Dream Time Limit: 2000/2000 MS (Java/ ...

  3. hdu 2604 递推 矩阵快速幂

    HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...

  4. hdu 4686 Arc of Dream(矩阵快速幂)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...

  5. HDU 4686 Arc of Dream 矩阵快速幂,线性同余 难度:1

    http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目 ...

  6. HDU 4686 Arc of Dream (2013多校9 1001 题,矩阵)

    Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  7. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  8. Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)

    题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...

  9. [hdu 2604] Queuing 递推 矩阵快速幂

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

随机推荐

  1. 【转载】有图 KVM折腾记..

    KVM折腾记...https://lengjibo.github.io/KVM%E6%8A%98%E8%85%BE%E8%AE%B0/  Veröffentlicht am 2018-09-20 |  ...

  2. DNS和BIND

    https://www.jianshu.com/p/296b2c7ea76f DNS和BIND 毛利卷卷发关注 0.482018.07.25 10:33:44字数 4,919阅读 4,909 DNS ...

  3. python基础之面向对象(二)(封装、继承、多态)

    一.封装 (1)封装是面向对象的一大特点 (2)面向对象编程的第一步--将属性和方法封装到一个抽象的类当中 (3)外界使用类创建对象,然后让对象调用方法 (4)对象方法的细节都被封装在类的内部 1.案 ...

  4. SUSE12 操作系统安装

    今天开发同事需要一个客户的SUSE环境,原来没有安装过这个操作系统,网络配置方面有些问题见下一篇 镜像:SLE-12-SP3-Server-DVD-x86_64-GM-DVD1.iso 安装过程: 选 ...

  5. 测试开发:从0到1学习如何测试API网关

    本文来自我的一名学员分享 日常工作中,难免会遇到临危受命的情况,虽然没有这么夸张,但是也可能会接到一个陌生的任务,也许只是对这个概念有所耳闻.也许这个时候会感到一丝的焦虑,生怕没法完成领导交给的测试任 ...

  6. python 中的nonlocal

    python 中nonloal 关键字用来在函数或其他作用域中使用外层变量(非全局),也可使用global需要在函数外部

  7. 企业定制CRM系统的5步流程

    由于所处的行业不同,不同的企业对CRM系统的需求也不同.除了行业通用的功能之外,每个企业都有自己独特的功能需求.为了让CRM系统跟上这种需求的变化,CRM厂商通常也会提供CRM系统定制开发功能来满足不 ...

  8. GO学习-(12) Go语言基础之函数

    Go语言基础之函数 函数是组织好的.可重复使用的.用于执行指定任务的代码块.本文介绍了Go语言中函数的相关内容. 函数 Go语言中支持函数.匿名函数和闭包,并且函数在Go语言中属于"一等公民 ...

  9. 使用ubuntu charmed kubernetes 部署一套生产环境的集群

    官方文档: https://ubuntu.com/kubernetes/docs 搭建一个基本的集群 集群ip规划 hostname ip ubuntu-1 10.0.0.10 juju-contro ...

  10. GVS灵动系列家族上新 | 稳住,我们能“银”

    用天赐的色库 给生活增加些艺术的气息 生活本应多点探索的乐趣 今天 GVS灵动系列家族流光银(白玻璃) 全新上线 用灵感朝圣自然之道 邂逅另一种柔性美学 与早前的经典黑.星耀灰 和而不同,美美与共 携 ...