洛谷 P6383 -『MdOI R2』Resurrection(DP)
高速公路上正是补 blog 的时候,难道不是吗/doge,难不成逆在高速公路上写题/jy
首先形成的图显然是连通图并且有 \(n-1\) 条边。故形成的图是一棵树。
我们考虑什么样的树能够得到。考虑以 \(n\) 为根,由于每个点的编号都小于其父亲这个条件的存在,我们每次断开一条边时,两个连通块中编号最大的点肯定是这两个连通块中深度最浅的节点。而显然,对于一条边 \((u,v)\),如果 \(u\) 是 \(v\) 的父亲,那么断开 \((u,v)\) 时 \(v\) 肯定是所在连通块中深度最浅的节点,也就是说我们要为每个点 \(x\) 找一个祖先 \(p_x\),满足断开 \(x\) 与其父亲的边时,\(p_x\) 为其父亲所在连通块中深度最浅的节点。
考虑什么样的序列 \(p\) 符合要求。打个表发现一条链的情况答案是卡特兰数(cartesian number bushi)。而卡特兰数刚好是由 \(n\) 个左括号和 \(n\) 个右括号组成的括号序列的数量,而括号序列中每对括号肯定是不能相交的——即,要么相离,要么互相包含。因此我们猜测一组 \(p\) 符合条件,当且仅当不存在两个 \(x,y\) 满足 \(p_x,p_y,x,y\) 依次存在祖先关系。事实上这个结论是正确的可惜我不会证。这样就可以 DP 了。考虑 \(dp_{i,j}\) 表示确定了 \(i\) 祖先(注意,这里与传统的 DP 不同,因为传统的 DP 一般都假设子树内的状态已经确定,而这题是假设祖先的状态已经确定)的 \(p\),目前 \(i\) 还有 \(j\) 个祖先可以选择,有多少个钦定 \(i\) 子树内点的 \(p\) 的方法,考虑如何转移,我们枚举 \(p_i\) 是目前可行的点中,从下往上数的第几个,设为 \(c\),那么这样在钦定 \(i\) 的儿子时会 ban 掉 \(c-1\) 个祖先,同时又会为 \(u\) 的儿子新增一个符合要求的祖先——\(u\),因此我们有 \(dp_{u,j}=\sum\limits_{c=1}^j\prod\limits_{v\in\text{son}(u)}dp_{v,j-c+2}\)。这样直接转移是三方的,无法通过。不过注意到这个 \(\sum\) 可以用前缀和优化掉,具体来说我们设 \(dp_{u,j}=dp_{u,j-1}+\prod\limits_{v\in\text{son}(u)}dp_{v,j+1}\),这样记忆化搜索一下复杂度即可达到平方。
为什么会有个 freopen
呢?因为这是场 mns 的赛题……
const int MAXN=3000;
const int MOD=998244353;
int n,hd[MAXN+5],to[MAXN*2+5],nxt[MAXN*2+5],ec=0;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int dp[MAXN+5][MAXN+5];
int calc(int x,int f,int k){
if(~dp[x][k]) return dp[x][k];dp[x][k]=0;
if(k>1) dp[x][k]=calc(x,f,k-1);int res=1;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f) continue;
res=1ll*res*calc(y,x,k+1)%MOD;
} dp[x][k]=(dp[x][k]+res)%MOD;
return dp[x][k];
}
int main(){
// freopen("reflection.in","r",stdin);
// freopen("reflection.out","w",stdout);
scanf("%d",&n);
for(int i=1,u,v;i<n;i++) scanf("%d%d",&u,&v),adde(u,v),adde(v,u);
memset(dp,-1,sizeof(dp));int res=1;
for(int e=hd[n];e;e=nxt[e]){int y=to[e];res=1ll*res*calc(y,n,1)%MOD;}
printf("%d\n",res);
return 0;
}
洛谷 P6383 -『MdOI R2』Resurrection(DP)的更多相关文章
- 洛谷 P6071 『MdOI R1』Treequery(LCA+线段树+主席树)
题目链接 题意:给出一棵树,有边权,\(m\) 次询问,每次给出三个数 \(p,l,r\),求边集 \(\bigcap\limits_{i=l}^rE(p,i)\) 中所有边的权值和. 其中 \(E( ...
- 洛谷 P6072 -『MdOI R1』Path(回滚莫队+01-trie)
题面传送门 又是 ix35 神仙出的题,先以 mol 为敬 %%% 首先预处理出根节点到每个点路径上权值的异或和 \(dis_i\),那么两点 \(a,b\) 路径上权值的异或和显然为 \(dis_a ...
- 洛谷4月月赛R2
洛谷4月月赛R2 打酱油... A.koishi的数学题 线性筛约数和就可以\(O(N)\)了... #include <iostream> #include <cstdio> ...
- 洛谷CF809C Find a car(数位DP)
洛谷题目传送门 通过瞪眼法发现,\(a_{i,j}=(i-1)\text{ xor }(j-1)+1\). 二维差分一下,我们只要能求\(\sum\limits_{i=0}^x\sum\limits_ ...
- 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)
次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...
- 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门
dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...
- 【题解】洛谷P3959 [NOIP2017TG] 宝藏(状压DP+DFS)
洛谷P3959:https://www.luogu.org/problemnew/show/P3959 前言 NOIP2017时还很弱(现在也很弱 看出来是DP 但是并不会状压DP 现在看来思路并不复 ...
- 【洛谷 P4934】 礼物 (位运算+DP)
题目链接 位运算+\(DP\)=状压\(DP\)?(雾 \(a\&b>=min(a,b)\)在集合的意义上就是\(a\subseteq b\) 所以对每个数的子集向子集连一条边,然后答案 ...
- Bzoj3566/洛谷P4284 [SHOI2014]概率充电器(概率dp)
题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直 ...
随机推荐
- vue3.x自定义组件双向数据绑定v-model
vue2.x 语法 在 2.x 中,在组件上使用 v-model 相当于绑定 value prop 并触发 input 事件: <ChildComponent v-model="pag ...
- 第五次Scrum Metting
日期:2021年5月2日 会议主要内容概述:讨论前端进度,修改后端接口. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 徐宇龙 后端 模板模块的实现及批量插入更 ...
- 【二食堂】Alpha - Scrum Meeting 11
Scrum Meeting 11 例会时间:4.21 18:00~18:20 进度情况 组员 进度 今日任务 李健 1. 登录注册页面前后端对接issue 1. 登录注册页面前后端对接issue2. ...
- activiti流程图上获取各节点的信息获取
背景: 由于项目的需要,当用户在查看流程图时,当点击某个流程图片上的节点时,需要提示一些信息,这就需要获取各个节点的信息,此处获取id和name的值. 注意:这个并 ...
- 在Vue前端项目中,附件展示的自定义组件开发
在Vue前端界面中,自定义组件很重要,也很方便,我们一般是把一些通用的界面模块进行拆分,创建自己的自定义组件,这样操作可以大大降低页面的代码量,以及提高功能模块的开发效率,本篇随笔继续介绍在Vue&a ...
- Noip模拟31 2021.8.5
T1 Game 当时先胡了一发$\textit{Next Permutation}$... 然后想正解,只想到贪心能求最大得分,然后就不会了.. 然后就甩个二十分的走了... 正解的最大得分(叫它$k ...
- 常用Java API:Calendar日期类
摘要 在蓝桥杯中有关于日期计算的问题,正好java中的Date类和Calendar类提供了对日期处理的一些方法.Date类大部分方法已经废弃了,所以本文将详细介绍Calendar类. Calendar ...
- webshell绕过D盾
PHP常见的代码执行函数: eval() assert() preg_replace() create_function() array_map() call_user_func() call_use ...
- 2021NOI同步赛
\(NOI\) 网上同步赛 明白了身为菜鸡的自己和普通人的差距 DAY1 \(T1\) 轻重边 [题目描述] 小 W 有一棵 \(n\) 个结点的树,树上的每一条边可能是轻边或者重边.接下来你需要对树 ...
- ubuntu 编译C++ error: ‘syscall’ was not declared in this scope
明明已经加了头文件 #include <sys/syscall.h> #include <sched.h> #include <sys/resource.h> 编译 ...