Sums gym100753M

同余最短路模板,然而这个东西貌似也可以做去年D1T2

首先我们选择一个模数作为基准,然后剩下的这样连边:

对于一个面值为 x 的硬币 ,当前在 u 这个点(感性理解一下吧)

  1. u + x < Mod

    这种情况直接从u向 u + x 连一条长度为0的边,表示我们在 0 * M + (u + x) 的时候就已经可以凑出了

  2. u + x > Mod

    这种情况下可以 u 向 ( u + x ) mod Mod 连一条长度为1的边,表示通过x的硬币至少在 1 * M + ( u + x ) 凑出。

直接dijk 复杂度会炸(但是可以用zkw线段树优化成 nlogm,就爆过去了)

然后如果Mod取硬币面值的最大值,那么这就是个01bfs,但是复杂度也是 O(n + M) 然而M是 n^2级别的

我们发现每个点只会考虑一次,所以我们可以用bitset优化这个bfs。具体而言,如果我们把 $ a[i] $ 存到一个bitset中,我们需要的转移是 $ trans $ 集体往左移动u次且循环移位后的trans。

学到了Bitset优化搜索这个套路233 但是由于需要提取1,还是得手写。。

这样优化就是 $ n + \frac{M}{w} $ 了

为了偷懒还是用类似dijk的bfs吧。。反正复杂度没问题

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<bitset>
using namespace std;
//#define int long long
typedef long long ll;
#define MAXN 50006
#define pb push_back
#define pii pair<int,int>
#define fi first
#define se second
#define mp make_pair
#define inf 0x3f3f3f3f
#define cmx( a , b ) a = max( a , b )
#define cmn( a , b ) a = min( a , b )
void read( int& x ) {
scanf("%d",&x);
}
void read( ll& x ) {
scanf("%lld",&x);
}
int n , q;
int A[MAXN] , mx; struct Bitset
{
unsigned a[1600];
void reset()
{
memset(a,0,sizeof(a));
}
Bitset()
{
reset();
}
void flip(int x)
{
a[x>>5]^=1<<(x&31);
}
void set(int x)
{
a[x>>5]|=1<<(x&31);
}
void reset(int x)
{
a[x>>5]&=~(1<<(x&31));
}
int test(int x)
{
return (a[x>>5]>>(x&31))&1;
}
Bitset operator ~()const
{
Bitset ret;
for(int i=0;i<1600;i++)ret.a[i]=~a[i];
return ret;
}
Bitset operator &(const Bitset &b)const
{
Bitset ret;
for(int i=0;i<1600;i++)ret.a[i]=a[i]&b.a[i];
return ret;
}
Bitset operator |(const Bitset &b)const
{
Bitset ret;
for(int i=0;i<1600;i++)ret.a[i]=a[i]|b.a[i];
return ret;
}
Bitset operator ^(const Bitset &b)const
{
Bitset ret;
for(int i=0;i<1600;i++)ret.a[i]=a[i]^b.a[i];
return ret;
}
Bitset operator <<(const int t)const
{
Bitset ret;
unsigned last=0;
int high=t>>5,low=t&31;
for(int i=0;i+high<1600;i++)
{
ret.a[i+high]=last|(a[i]<<low);
if(low)last=a[i]>>(32-low);
}
return ret;
}
Bitset operator >>(const int t)const
{
Bitset ret;
unsigned last=0;
int high=t>>5,low=t&31;
for(int i=1600-1;i>=high;i--)
{
ret.a[i-high]=last|(a[i]>>low);
if(low)last=a[i]<<(32-low);
}
return ret;
}
vector<int> ones()const
{
vector<int> ret;
for(int i=0;i<1600;i++)
{
unsigned tmp=a[i];
while(tmp)
{
short t=__builtin_ctz(tmp);
ret.pb((i<<5)|t);
tmp^=1u<<t;
}
}
return ret;
}
}use,trans;
int dis[MAXN];
priority_queue< pii , vector<pii> , greater<pii> > Q;
vector<int> cur;
void bfs( ) {
memset( dis , 0x3f , sizeof dis );
Q.push( mp( 0 , 0 ) ); dis[0] = 0;
while( !Q.empty() ) {
int u = Q.top().se; Q.pop( );
cur = ( ( ( trans << u ) | ( trans >> ( mx - u ) ) ) & use ).ones( );
for( auto& v : cur ) {
if( v < u )
dis[v] = dis[u] + 1 , Q.push( mp( dis[v] , v ) ) , use.reset( v );
else
dis[v] = dis[u] , Q.push( mp( dis[v] , v ) ) , use.reset( v );
}
}
} int main() {
read( n );
for( int i = 1 ; i <= n ; ++ i )
read( A[i] ) , mx = max( mx , A[i] );
for( int i = 1 ; i <= n ; ++ i ) trans.set( A[i] );
for( int i = 0 ; i <= mx ; ++ i ) use.set( i );
bfs();
read( q );
int x;
while( q --> 0 ) {
read( x );
int a = x % mx , b = x / mx;
puts( ( dis[a] == 0x3f3f3f3f || dis[a] > b ) ? "NIE" : "TAK" );
}
} /*
* Things you should pay attention to
* inf is big enough?
* out of bounds?
* long long ?
*/

Sums gym100753M的更多相关文章

  1. 正睿OI国庆DAY2:图论专题

    正睿OI国庆DAY2:图论专题 dfs/例题 判断无向图之间是否存在至少三条点不相交的简单路径 一个想法是最大流(后来说可以做,但是是多项式时间做法 旁边GavinZheng神仙在谈最小生成树 陈主力 ...

  2. [LeetCode] Find K Pairs with Smallest Sums 找和最小的K对数字

    You are given two integer arrays nums1 and nums2 sorted in ascending order and an integer k. Define ...

  3. UVA-11997 K Smallest Sums

    UVA - 11997 K Smallest Sums Time Limit: 1000MS   Memory Limit: Unknown   64bit IO Format: %lld & ...

  4. POJ3187Backward Digit Sums[杨辉三角]

    Backward Digit Sums Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6350   Accepted: 36 ...

  5. Leetcode Find K Pairs with smallest sums

    本题的特点在于两个list nums1和nums2都是已经排序好的.本题如果把所有的(i, j)组合都排序出来,再取其中最小的K个.其实靠后的很多组合根本用不到,所以效率较低,会导致算法超时.为了简便 ...

  6. SPOJ TSUM Triple Sums(FFT + 容斥)

    题目 Source http://www.spoj.com/problems/TSUM/ Description You're given a sequence s of N distinct int ...

  7. ural 2065. Different Sums

    2065. Different Sums Time limit: 1.0 secondMemory limit: 64 MB Alex is a very serious mathematician ...

  8. codeforces 477A A. Dreamoon and Sums(数学)

    题目链接: A. Dreamoon and Sums time limit per test 1.5 seconds memory limit per test 256 megabytes input ...

  9. [codeforces 509]C. Sums of Digits

    [codeforces 509]C. Sums of Digits 试题描述 Vasya had a strictly increasing sequence of positive integers ...

随机推荐

  1. mac无坑安装nginx

    mac无坑安装nginx 首先需要mac下有一个缺失的软件包的管理器------->homebrew 1.打开终端输入 brew update 说明homebrew已经安装好了 2.继续执行以下 ...

  2. 【UE4 设计模式】工厂方法模式 Factory Method Pattern 及自定义创建资源

    概述 描述 又称为工厂模式,也叫虚拟构造器(Virtual Constructor)模式,或者多态工厂(Polymorphic Factory)模式 工厂父类负责定义创建产品对象的公共接口,而工厂子类 ...

  3. python streamlit 速成web页面,深度学习模型展示.

    #  点我查看 参考文献 py中一个web应用,Streamlit 是一个开源 Python 库,可让您轻松创建和共享用于机器学习和数据科学的精美自定义 Web 应用程序.只需几分钟,您就可以构建和部 ...

  4. LeetCode:链表专题

    链表专题 参考了力扣加加对与链表专题的讲解,刷了些 leetcode 题,在此做一些记录,不然没几天就没印象了 出处:力扣加加-链表专题 总结 leetcode 中对于链表的定义 // 定义方式1: ...

  5. CanalAdmin搭建Canal Server集群

    CanalAdmin搭建Canal Server集群 一.背景 二.机器情况 三.实现步骤 1.下载canal admin 2.配置canalAdmin 3.初始化canal admin数据库 4.启 ...

  6. OpenWrt编译报错:Package airfly_receiver is missing dependencies for the following libraries

    今天在编译一个OpenWrt测试用例的时候出现报错 Package airfly_receiver is missing dependencies for the following librarie ...

  7. 数组中出现次数超过一半的数字 牛客网 剑指Offer

    数组中出现次数超过一半的数字 牛客网 剑指Offer 题目描述 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字 ...

  8. Python import cStringIO ImportError: No module named 'cStringIO'

    From Python 3.0 changelog; The StringIO and cStringIO modules are gone. Instead, import the io modul ...

  9. .Net Minimal Api 介绍

    Minimal API是.Net 6中新增的模板,借助C# 10的一些特性以最少的代码运行一个Web服务.本文脱离VS通过VS Code,完成一个简单的Minimal Api项目的开发. 创建项目 随 ...

  10. (一)《SQL进阶教程》学习记录--CASE

    背景:最近用到统计之类的复杂Sql比较多,有种"提笔忘字"的感觉,看书练习,举一反三,巩固加强. (一) <SQL进阶教程>学习记录--CASE (二) <SQL ...