下面讨论如何使用 Discontinuous Galerkin 求解恒定对流问题。

1.简介

恒定状态对流方程

\[\begin{equation}
a\cdot \nabla \mathbf{u} = f
\end{equation}\]

出现在多种问题中,如海洋模型中求解连续方程计算垂向速度,明渠恒定流动问题等。

2.数值离散

首先需要将方程写为离散格式,以一维问题为例

\[\begin{eqnarray}
\begin{aligned}
& \frac{\partial u}{\partial x} = sin(x) \quad x\in[0, 2\pi] \cr
& u(0) = 1
\end{aligned}
\end{eqnarray}\]

将方程乘以实验函数(test function)并在控制单元内积分,利用分部积分将方程转化为

\[\begin{equation}
\oint_{\Omega}(l_i \cdot u) n_x dx - \int_{\Omega} \frac{\partial l_i}{\partial x} u dx = \int_{\Omega} l_i f_h dx
\end{equation}\]

用基函数线性组合近似变量 \(u \approx u_h = \sum_{j=1}^P l_j u_j\),源项 \(f_h\) 也采用基函数线性近似 \(f_h = \sum_{j=1}^P l_j f_j\) 结果为

\[\begin{equation}
\left( \oint_{\Omega}(l_i \cdot l_j) dx \right) u_j \cdot n_x - \left( \int_{\Omega} \frac{\partial l_i}{\partial x} l_j dx \right) u_j = \left( \int_{\Omega} l_i l_j dx \right) f_j
\end{equation}\]

写成矩阵形式为

\[\begin{equation}
J_s M_e \hat{u}_n - J M Dr \cdot u = J M \cdot f
\end{equation}\]

其中边界通量 \(\hat{u}_n\) 采用如下方式计算

\[\hat{u}_n = u_L \cdot n_x
\]

即始终采用边界左侧节点值计算数值通量。这主要是因为边界条件定义在计算域左侧,在计算时也将由左向右逐个单元进行计算,也就是数据从左向右进行传递。

3.联立求解

与包含时间项的非恒定方程不同,恒定对流方程需要将系数矩阵联立求解。

与普通系数矩阵构造不同,这里首先设多元函数 \(L:\mathbb{R}^{Np} \to \mathbb{R}^{Np}\),

\[L(\mathbf{u}) = J_s M_e \hat{u}_n - J M Dr \cdot \mathbf{u} = (L_1, L_2, \cdots, L_{Np})^T
\]

最终目标是寻找变量 \(\mathbf{u}_0\),使得等式 \(L(\mathbf{u}_0) = JM \cdot f\) 成立。

这里令 \(\mathbf{e}_i\) 表示第\(i\)个分量为单位1,其余分量为0的解。假设函数满足线性关系:若

\[\begin{equation}
u_0 = \sum_{i=1}^{Np} u_i \mathbf{e}_i
\end{equation}\]

那么对应的函数有

\[\begin{equation}
L(\mathbf{u}_0) = \sum_{i=1}^{Np} u_i L(\mathbf{e}_i)
\end{equation}\]

那么我们通过构造系数矩阵 \(A = \left( L(\mathbf{e}_1), L(\mathbf{e}_2), \cdots, L(\mathbf{e}_{Np}) \right)\),联立 \(Au_i = JM \cdot f\),便可得到最终未知解 \(u_0 = \left( u_1, u_2, \cdots, u_{Np} \right)\)。

4.边界条件

在恒定输运方程中,在给定边界 \(\Gamma_D\) 上为Dirichlet边界 \(u = u_D\)。参考有限元方法,可以采用置大数法,即修改对应系数矩阵 \(A\),与源项 \(f\) 来耦合 \(\Gamma_D\) 上已知解。具体方法请参考有限元边界 Dirichlet 条件处理

5.代码

SteadyConvectionDriver 负责构造计算所需的网格及标准线单元系数矩阵(刚度矩阵,质量矩阵等),方程源项 \(f\) 也在此给定。

function SteadyConvectionDriver
% solving steady convection problem by DGM
% \nabla u = sin(x)
%
x1 = 0; x2 = 2*pi; % domain N = 1; nElement = 20;
[~, VX, ~, EToV] = Utilities.Mesh.MeshGen1D(x1, x2, nElement);
BC = [2,1]; %
line = StdRegions.Line(N);
mesh = MultiRegions.RegionLineBC(line, EToV, VX, BC); f = sin(mesh.x); u = SteadyConvectionSolver(mesh, f); plot(mesh.x(:), u(:), 'b', mesh.x(:), cos(mesh.x(:)), 'r');
end% func

SteadyConvectionSolver 负责求解方程组,根据所给边界条件,采用置大数法修改对应系数矩阵及右端项系数,

function u = SteadyConvectionSolver(mesh, f)
% set up and solve the equation system
% Input:
% mesh - mesh object
% f - source term
% Output:
% u - unknown variable f = mesh.J.*(mesh.Shape.M*f); %% set up and solve global matrix coeffcient % get system global matrix coefficient
A = SteadyConvectionCoeffMatrix(mesh); % boundary condition
u0 = 1; M = 1e8;
A(1, 1) = M; f(1) = u0*M; solvec = A\f(:);
u = reshape(solvec, size(mesh.x) ); end% func

SteadyConvectionCoeffMatrix负责构造系数矩阵,每次计算单位变量 \(\mathbf{e}_{i}\) 对应的多元函数值 \(L(\mathbf{e}_{i})\)

function A = SteadyConvectionCoeffMatrix(mesh)
% set up symmetric matrix A = zeros(mesh.nNode, mesh.nNode);
g = zeros(size(mesh.x)); % Build matrix -- one column at a time
for i = 1:mesh.nNode
g(i) = 1; Avec = SteadyConvectionRHS(mesh, g);
A(:, i) = Avec(:);
g(i) = 0;
end% for end% func

SteadyConvectionRHS计算函数 \(L(\mathbf{u})\),根据信息传递方向,在边界处数值通量采用迎风格式计算。

function rhs = SteadyConvectionRHS(mesh, u)
% right hands of equation
% us = zeros( size(u(mesh.vmapM)) );
us(1, :) = u(mesh.vmapP(1, :));
us(2, :) = u(mesh.vmapM(2, :)); us = us.*mesh.nx; rhs = (mesh.Shape.Mef * us) - mesh.J.*( mesh.rx .*( mesh.Shape.Dr'*(mesh.Shape.M*u) ));
end% func

6.计算结果

已知方程精确解为 \(u(x) = -cos(x) + 2\),分别采用不同阶(N=1,2,3)与不同个数(Ne=10,20,40,80)单元进行计算,统计对应的 \(L_1\)、\(L_2\) 误差及收敛速率。

6.1.N=1

Ne L1 rate
10 0.029536 \
20 0.007977 1.888594
40 0.002040 1.967584
80 0.000513 1.991309
Ne L2 rate
10 0.037214 \
20 0.009872 1.914490
40 0.002506 1.978170
80 0.000629 1.994526

6.2.N=2

Ne L1 rate
10 0.001776 \
20 0.000172 3.368547
40 0.000019 3.170322
80 0.000002 3.081502
Ne L2 rate
10 0.002184 \
20 0.000233 3.227791
40 0.000028 3.073642
80 0.000003 3.020009

6.3.N=3

Ne L1 rate
10 0.000175 \
20 0.000011 3.938733
40 0.000001 3.975718
80 0.000000 3.855050
Ne L2 rate
10 0.000189 \
20 0.000012 3.946121
40 0.000001 3.978587
80 0.000000 3.871224

Discontinuous Galerkin method for steady transport problem的更多相关文章

  1. 2.7 编程之美--最大公约数的3种解法[efficient method to solve gcd problem]

    [本文链接] http://www.cnblogs.com/hellogiser/p/efficient-method-to-solve-gcd-problem.html [题目] 求两个正整数的最大 ...

  2. FESTUNG — 3. 采用 HDG 方法求解对流问题

    FESTUNG - 3. 采用 HDG 方法求解对流问题[1] 1. 控制方程 线性对流问题控制方程为 \[\begin{array}{ll} \partial_t c + \nabla \cdot ...

  3. Hermite WENO 重构格式

    Hermite WENO 单元重构 本文主要介绍采用 Hermite WENO 重构方法作为斜率限制器应用于二维或高维单元中. 1.简介[1] ENO格式最早由 Harten 等[2]提出,ENO格式 ...

  4. TVB斜率限制器

    TVB斜率限制器 本文参考源程序来自Fluidity. 简介 TVB斜率限制器最早由Cockburn和Shu(1989)提出,主要特点是提出了修正minmod函数 \[\tilde{m}(a_1, a ...

  5. 泡泡一分钟: A Linear Least Square Initialization Method for 3D Pose Graph Optimization Problem

    张宁 A Linear Least Square Initialization Method for 3D Pose Graph Optimization Problem "链接:https ...

  6. Matlab-7:偏微分方程数值解法-李荣华-有限元解导数边界值的常微分(Galerkin方法)

    p47.(实习题-李荣华)用线性元求下列边值问题的数值解 tic; % this method is transform from Galerkin method %also call it as f ...

  7. Matlab:导数边界值的有限元(Galerkin)法

    tic; % this method is transform from Galerkin method %also call it as finit method %is used for solv ...

  8. [LeetCode&Python] Problem 905: Sort Array By Parity

    Given an array A of non-negative integers, return an array consisting of all the even elements of A, ...

  9. [LeetCode&Python] Problem 1: Two Sum

    Problem Description: Given an array of integers, return indices of the two numbers such that they ad ...

随机推荐

  1. 【UE4 C++】绘制函数 Debug drawing functions

    基于UKismetSystemLibrary /** Draw a debug line */ UFUNCTION(BlueprintCallable, Category="Renderin ...

  2. kivy画个半圆

    from kivy.uix.boxlayout import BoxLayout from kivy.app import App class BoxLayoutWidget(BoxLayout): ...

  3. pagelayout在py中的引用不支持size_hint和pos_hint

    from kivy.uix.pagelayout import PageLayout from kivy.uix.button import Button from kivy.app import A ...

  4. 普通用户在命令终端使用Python脚本连入校园网

    普通用户在命令终端使用Python脚本连入校园网 想要连入校园网的步骤: 浏览器输入对应的IP地址,输入账号密码连网: 下载对应软件,输入账号密码连网: 而面对没有界面的服务器,而你又没有root权限 ...

  5. BZOJ4919[Lydsy1706月赛]大根堆-------------线段树进阶

    是不是每做道线段树进阶都要写个题解..根本不会写 Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切 ...

  6. linux shell脚本中的开头#!/bin/bash的含义

    对于linux上需要执行 的shell脚本,通常第一行的内容是 #!/bin/bash 当然有很多时候不规范的写法可以忽略掉这一句,执行起来好像也是ok,结果没什么不一样 .. 这只是因为在我们常用 ...

  7. JAVA笔记15__TCP服务端、客户端程序 / ECHO程序 /

    /** * TCP:传输控制协议,采用三方握手的方式,保证准确的连接操作. * UDP:数据报协议,发送数据报,例如:手机短信或者是QQ消息. */ /** * TCP服务器端程序 */ public ...

  8. 面试官:能手写实现call、apply、bind吗?

    1 call.apply.bind 用法及对比 1.1 Function.prototype 三者都是Function原型上的方法,所有函数都能调用它们 Function.prototype.call ...

  9. Linux 兴趣小组2016免试题 第四关揭秘

    Linux 兴趣小组2016免试题 点这里 首先贴出第四关链接Linux 兴趣小组2016免试题 第四关 第四关: 进入网址我们看到的是4张扑克牌K,这是什么意思? 要我斗地主?好了,还是乖乖的先查看 ...

  10. TCP粘"包"问题浅析及解决方案Golang代码实现

    一.粘"包"问题简介 在socket网络编程中,都是端到端通信,客户端端口+客户端IP+服务端端口+服务端IP+传输协议就组成一个可以唯一可以明确的标识一条连接.在TCP的sock ...