Codeforces 1264D - Beautiful Bracket Sequence(组合数学)
首先对于这样的题目,我们应先考虑如何计算一个括号序列 \(s\) 的权值。一件非常显然的事情是,在深度最深的、是原括号序列的子序列的括号序列中,必定存在一个满足前面只由一段左括号,后面只由一段右括号组成,因此我们考虑枚举这中间位置在原括号序列中对应哪个位置,那么假设这个断点位于 \(i\) 和 \(i+1\) 之间,我们设 \(i\) 及之前有 \(x\) 个左括号,\(i+1\) 及之后有 \(y\) 个右括号,那么显然以这个位置为端点的括号序列的深度就是 \(\min(x,y)\),注意到这里涉及一个 \(\min\),一脸不好直接维护的样子,不过注意一件事情,那就是你这个 \(i\) 每往后移一格,\(x-y\) 就会恰好增加 \(1\),也就是说必然恰好存在一个断点满足 \(x=y\),在此之前,\(x<y\),因此 \(\min(x,y)=x\),在此之后,\(x>y\),因此 \(\min(x,y)=y\),又因为 \(x\) 随 \(i\) 的增大单调不增,\(y\) 随 \(i\) 的增大单调不降,因此在这个断点前必然有 \(\min(x,y)<\) 断点处的 \(x\),在这个断点之后必然有 \(\min(x,y)>\) 断点处的 \(x\),因此这个断点处的 \(x\) 就是该括号序列所有由一段左括号+一段右括号组成的合法括号序列中,深度最大的那一个,也就是说:
Conclusion. 一个括号序列的权值,等于其所有相邻位置 \(i,i+1\) 中,满足 \(i\) 及之前左括号个数等于 \(i+1\) 之后的右括号个数的 \(i\) 之前的左括号个数。
接下来此题就变成一个组合数学问题了,考虑枚举这个断点 \(i\),假设 \(i\) 前面问号个数为 \(a\),左括号个数为 \(b\),\(i+1\) 后面问号个数为 \(c\),右括号个数为 \(d\),那么这个点的贡献为:
\]
然后括号拆拆,组合恒等式推推:
&\sum\limits_{i=0}^a(i+b)\dbinom{a}{i}\dbinom{c}{i+b-d}\\
=&\sum\limits_{i=0}^ai\dbinom{a}{i}\dbinom{c}{i+b-d}+b\sum\limits_{i=0}^a\dbinom{a}{i}\dbinom{c}{i+b-d}\\
=&\sum\limits_{i=0}^aa\dbinom{a-1}{i-1}\dbinom{c}{i+b-d}+b\sum\limits_{i=0}^a\dbinom{a}{i}\dbinom{c}{i+b-d}\\
=&a\sum\limits_{i=0}^a\dbinom{a-1}{a-i}\dbinom{c}{i+b-d}+b\sum\limits_{i=0}^a\dbinom{a}{a-i}\dbinom{c}{i+b-d}\\
=&a\dbinom{a-1+c}{a+b-d}+b\dbinom{a+c}{a+b-d}
\end{aligned}
\]
预处理一下简单算算即可。
const int MAXN=1e6;
const int MOD=998244353;
char s[MAXN+5];int n;
int fac[MAXN*2+5],ifac[MAXN*2+5];
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i]*ifac[i-1]%MOD;
}
int binom(int x,int y){
if(x<0||y<0||x<y) return 0;
return 1ll*fac[x]*ifac[y]%MOD*ifac[x-y]%MOD;
}
int main(){
scanf("%s",s+1);n=strlen(s+1);init_fac(MAXN+5);int s1=0,s2=0,ans=0;
for(int i=1;i<=n;i++) s1+=(s[i]==')'),s2+=(s[i]=='?');
for(int i=1,x=0,l=0,c=0;i<=n;i++){
x+=(s[i]=='?');l+=(s[i]=='(');c+=(s[i]==')');int y=s2-x,r=s1-c;
ans=(ans+1ll*l*binom(x+y,y+r-l)+1ll*x*binom(y+x-1,y-l+r-1))%MOD;
} printf("%d\n",ans);
return 0;
}
Codeforces 1264D - Beautiful Bracket Sequence(组合数学)的更多相关文章
- CodeForces 670E Correct Bracket Sequence Editor(list和迭代器函数模拟)
E. Correct Bracket Sequence Editor time limit per test 2 seconds memory limit per test 256 megabytes ...
- Codeforces 670E - Correct Bracket Sequence Editor - [线段树]
题目链接:https://codeforces.com/contest/670/problem/E 题意: 给出一个已经匹配的括号串,给出起始的光标位置(光标总是指向某个括号). 有如下操作: 1.往 ...
- Codeforces 670E - Correct Bracket Sequence Editor - [链表]
题目链接:https://codeforces.com/contest/670/problem/E 题意: 给出一个已经匹配的括号串,给出起始的光标位置(光标总是指向某个括号). 有如下操作: 1.往 ...
- Codeforces 670E - Correct Bracket Sequence Editor - [对顶栈]
题目链接:https://codeforces.com/contest/670/problem/E 题意: 给出一个已经匹配的括号串,给出起始的光标位置(光标总是指向某个括号). 有如下操作: 1.往 ...
- CodeForces 670E Correct Bracket Sequence Editor
链表,模拟. 写一个双向链表模拟一下过程. #pragma comment(linker, "/STACK:1024000000,1024000000") #include< ...
- CF1264D2 Beautiful Bracket Sequence
我们枚举每两个字符的空档,统计一个空档左边有 \(l\) 个左括号, 右边有 \(r\) 个右括号,左边有 \(u\) 个问号,右边有 \(v\) 个问号. 则对于 \(p\) 的答案 \(ans_p ...
- CF1264D2 Beautiful Bracket Sequence (hard version)
考虑\(D1\)的\(O(n^2)\),我们直接进行组合处理. 考虑在\(p\)这个位置,左边有\(l\)个(,右边有\(r\)个),左边有\(l\)个问号,右边有\(r\)个问号. 这个位置的贡献为 ...
- CF1264D1 Beautiful Bracket Sequence (easy version)
考虑在一个确定的括号序列中,我们可以枚举中间位置,按左右最长延伸出去的答案计算. 我们很自然的思考,我们直接维护左右两边,在删除一些字符后能够延伸的最长长度. 我们设\(f_{i,j}\)为\(i\) ...
- Educational Codeforces Round 4 C. Replace To Make Regular Bracket Sequence 栈
C. Replace To Make Regular Bracket Sequence 题目连接: http://www.codeforces.com/contest/612/problem/C De ...
随机推荐
- 异构智联Wi-Fi+蓝牙模组,连接快、准、稳!
下班回家打开门,电灯.电视.空调.音响.电动窗帘.扫地机器人--一呼百应,有序开工,原本冰冷的房子立刻变成了温暖港湾.可以说,舒适便捷的智能设备已经完全融入了我们的生活中. 从单一场景.单一设备,到现 ...
- javascript-jquery对象的其他处理
一.对元素进行遍历操作 如果要遍历一个jquery对象,对其中每个匹配元素进行相应处理,那么可以使用each()方法. $("div").each(function(index,e ...
- 初识HTML01
什么是页面? 页面是基于浏览器的应用程序 页面是数据展示的载体,由浏览器和服务器共同执行产物. 浏览器的功能 向服务器发送用户请求指令 接收并解析数据展示给用户 服务器的功能 存储页面资源 处理并响应 ...
- Scrum Meeting 11
第11次例会报告 日期:2021年06月01日 会议主要内容概述: 汇报了进度,开始爆肝. 一.进度情况 我们采用日报的形式记录每个人的具体进度,链接Home · Wiki,如下记录仅为保证公开性: ...
- [对对子队]会议记录5.14(Scrum Meeting1)
今天已完成的工作 何瑞 工作内容:初步完成循环指令系统 相关issue:实现循环语句系统的逻辑 相关签入:feat:循环语句的指令编辑系统初步完成 吴昭邦 工作内容:将流水线系统和循环 ...
- 计算机网络之传输层(传输层提供的服务及功能概述、端口、套接字--Socket、无连接UDP和面向连接TCP服务)
文章转自:https://blog.csdn.net/weixin_43914604/article/details/105451022 学习课程:<2019王道考研计算机网络> 学习目的 ...
- uvm_subscriber
subscriber是消费,用户的意思 uvm_subscriber主要作为coverage的收集方式之一 uvm_subscriber的代码非常简单,继承于uvm_component,再加上一个an ...
- cf17B Hierarchy(额,,,水)
题意: Nick's company employed n people. Now Nick needs to build a tree hierarchy of «supervisor-surbod ...
- Tomcat 内存马(一)Listener型
一.Tomcat介绍 Tomcat的主要功能 tomcat作为一个 Web 服务器,实现了两个非常核心的功能: Http 服务器功能:进行 Socket 通信(基于 TCP/IP),解析 HTTP 报 ...
- TCP粘"包"问题浅析及解决方案Golang代码实现
一.粘"包"问题简介 在socket网络编程中,都是端到端通信,客户端端口+客户端IP+服务端端口+服务端IP+传输协议就组成一个可以唯一可以明确的标识一条连接.在TCP的sock ...