Solution -「NOI.AC 省选膜你赛」T2
这道题就叫 T2 我有什么办法www
题目
题意简述
给定一个字符串 \(s\),其长度为 \(n\),求无序子串对 \((u,v)\) 的个数,其中 \((u,v)\) 满足 \(u,v\) 均为回文串且出现位置相交。
数据规模
\(n\le2\times10^6\),字符集为小写字母(于是测试数据里有神奇的'{'字符。
题解
难得的水题呐!
正难则反,首先求出总的回文子串对数,再减去出现位置不交的对数。
对于前者,用 Manacher 或者 PAM 都可以轻松求出,这里用的 PAM。
对于后者,记 \(f(i)\) 为原串中以 \(i\) 结尾的回文串个数,\(g(i)\) 为 \(s[i..n]\) 中的回文子串个数。那么不交的回文子串对的对数为:
\]
\(f\) 和 \(g\) 亦能用 PAM 求出,这道题就解决啦~
最后测试数据出锅,AC 失败qwq。
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
const int MAXN = 2e6, MOD = 998244353, INV2 = 499122177;
char s[MAXN + 5];
int preend[MAXN + 5], sufend[MAXN + 5];
class PalindromeAutomaton {
private:
int cnt, lst, ch[MAXN + 5][26], len[MAXN + 5], link[MAXN + 5], dep[MAXN + 5];
public:
PalindromeAutomaton (): cnt ( 1 ), lst ( 1 ), len { 0, -1 }, link { 1, 0 } {}
inline void clear () {
for ( int i = 0; i <= cnt; ++ i ) {
dep[i] = link[i] = len[i] = 0;
for ( int j = 0; j < 26; ++ j ) ch[i][j] = 0;
}
cnt = lst = 1, len[1] = -1, link[0] = 1;
}
inline int build ( const char* str, int* endcnt ) {
int ret = 0;
for ( int i = 1; str[i]; ++ i ) {
int cid = str[i] - 'a', p = lst;
for ( ; str[i] ^ str[i - len[p] - 1]; p = link[p] );
if ( ! ch[p][cid] ) {
int cur = ++ cnt, q = link[p]; len[cur] = len[p] + 2;
for ( ; str[i] ^ str[i - len[q] - 1]; q = link[q] );
dep[cur] = dep[link[cur] = ch[q][cid]] + 1, ch[p][cid] = cur;
}
ret = ( ret + ( endcnt[i] = dep[lst = ch[p][cid]] ) ) % MOD;
}
return ret;
}
} pam;
int main () {
scanf ( "%s", s + 1 );
int ans = pam.build ( s, preend ), n = strlen ( s + 1 );
ans = ( ans * ( ans - 1ll ) % MOD * INV2 % MOD + MOD ) % MOD;
pam.clear (), std :: reverse ( s + 1, s + n + 1 );
pam.build ( s, sufend ), std :: reverse ( sufend + 1, sufend + n + 1 );
for ( int i = n - 1; i; -- i ) sufend[i] = ( sufend[i + 1] + sufend[i] ) % MOD;
for ( int i = 1; i < n; ++ i ) ans = ( ( ans - 1ll * preend[i] * sufend[i + 1] % MOD ) % MOD + MOD ) % MOD;
printf ( "%d\n", ans );
return 0;
}
Solution -「NOI.AC 省选膜你赛」T2的更多相关文章
- Solution -「NOI.AC 省选膜你赛」array
题目 题意简述 维护一个长度为 \(n\) 的序列 \(\{a_n\}\),并给出 \(q\) 个操作: 将下标为 \(x\) 的数修改为 \(y\). 给定 \(l,r,k\),求最大的 \(m ...
- Solution -「NOI.AC 省选膜你赛」寄蒜几盒
题目 题意简述 给定一个含有 \(n\) 个顶点的凸多边形( \(n\) 是偶数),对于每一对相对的边(即中间有 \(\frac{n}2-1\) 条其它边),延长它们以将平面分割为多块,并把包含原 ...
- Solution -「NOI.AC 省选膜你赛」union
题目 题意简述 给定两颗树 \(A,B\),\(A\) 中的任一结点 \(u\) 与 \(B\) 中的任一结点 \(v\) 都有一个关系值 \(f(u,v)\),初始为 \(0\).再给出 \(q ...
- cdcqの省选膜你赛
cdcqの省选膜你赛 比赛当天因为在杠hnoi2016的大数据结构没有参加,今天补了一下.挺好玩的虽然不看一句话题意的话真的卡读题 此生无悔入东方,来世愿生幻想乡 2651. 新史「新幻想史 -现代史 ...
- Solution -「NOI 2021」「洛谷 P7740」机器人游戏
\(\mathcal{Description}\) Link. 自己去读题面叭~ \(\mathcal{Solution}\) 首先,参悟[样例解释 #2].一种暴力的思路即为钦定集合 \ ...
- Solution -「NOI 2020」「洛谷 P6776」超现实树
\(\mathcal{Description}\) Link. 对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...
- Solution -「NOI 模拟赛」彩色挂饰
\(\mathcal{Description}\) 给定一个含 \(n\) 个点 \(m\) 条边的简单无向图,设图中最大点双的大小为 \(s\),则保证 \(s\le6\).你将要用 \(k\) ...
- Solution -「NOI 模拟赛」出题人
\(\mathcal{Description}\) 给定 \(\{a_n\}\),求一个 \(\{b_{n-1}\}\),使得 \(\forall x\in\{a_n\},\exists i,j\ ...
- Solution -「NOI 2016」「洛谷 P1587」循环之美
\(\mathcal{Description}\) Link. 给定 \(n,m,k\),求 \(x\in [1,n]\cap\mathbb N,y\in [1,m]\cap \mathbb ...
随机推荐
- Shell 中的 expect 命令
目录 expect 介绍 expect 安装 expect 语法 自动拷贝文件到远程主机 示例一 示例二 示例三 示例四 expect 介绍 借助 expect 处理交互的命令,可以将交互过程如 ss ...
- js 关于replace() 的使用心得
1.前言 我想把一段话 let a = "抱歉,您当前的主治医生有紧急情况不得不下班,您的预约将由<br>医生:里斯<br>为您就诊,<br>诊室位置:门 ...
- Windows系统上搭建Clickhouse开发环境
Windows系统上搭建Clickhouse开发环境 总体思路 微软的开发IDE是很棒的,有两种:Visual Studio 和 VS Code,一个重量级,一个轻量级.近年来VS Code越来越受欢 ...
- efcore使用ShardingCore实现分表分库下的多租户
efcore使用ShardingCore实现分表分库下的多租户 介绍 本期主角:ShardingCore 一款ef-core下高性能.轻量级针对分表分库读写分离的解决方案,具有零依赖.零学习成本.零业 ...
- promise到底怎么理解
Promise的含义promise是异步编程的一种解决方法.所谓promise,简单说是一个容器,里面保存着某个未来才会结束的事件(通常是一个异步操作)的结果,从语法上说,promise是一个对象,从 ...
- k个鸡蛋从N楼层摔,如果确定刚好摔碎的那个楼层,最坏情况下最少要试验x次?
题目 k个鸡蛋从N楼层摔,如果确定刚好摔碎的那个楼层,最坏情况下最少要试验x次? 换个说法: k个鸡蛋试验x次最多可以检测N层楼.计算出N? 逆向思维和数学公式解. 分析 定义N(k,x) 如果第k个 ...
- Xamarin/Unity3d无法访问Azure服务器或者微软API
Xamarin因为是mono项目的商用版,mono项目是.net技术的开源修改版,所以和微软的服务对接时候会出现安全验证问题. mono项目本质是对汇编级的中间语言二次编译.可参考公共语言运行时相关知 ...
- 搭服务器之kvm--vnc连接虚拟机连接闪退直接消失 以及virsh shutdown命令无效解决办法。
之前暑期见识到了虚拟化在企业中的应用,感慨不小,以前只是自己在玩儿桌面vmware workstation,安装的虚拟机也没啥大感觉.在公司机房里大家用的dell poweredge 420,8gme ...
- Git安装详解
官网地址: https://git-scm.com/ 查看 GNU 协议,可以直接点击下一步. 选择 Git 安装位置,要求是非中文并且没有空格的目录,然后下一步. Git 选项配置,推荐默认设置,然 ...
- 运维利器-ClusterShell集群管理
在运维实战中,如果有若干台数据库服务器,想对这些服务器进行同等动作,比如查看它们当前的即时负载情况,查看它们的主机名,分发文件等等,这个时候该怎么办?一个个登陆服务器去操作,太傻帽了!写个shell去 ...