\(\mathcal{Description}\)

  OurOJ & 洛谷 P4372(几乎一致)

  设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排序,则重复冒泡排序零次或多次,直到存在某个位置 \(p\in[l,r)\),满足 \(\max_{i=l}^p\{a_i\}<\min_{i=p+1}^r\{a_i\}\),则递归入 \([l,p]\) 和 \((p,r]\),直到区间长度为 \(1\) 时停止。求所有冒泡排序所操作的区间长度之和。

  \(n\le10^5\),保证 \(\{a_n\}\) 无重复数字。

\(\mathcal{Solution}\)

  可以发现“递归入两个区间”是对冒泡排序一个并没有什么用的剪枝——两个区间之间一定不会出现元素交换。那么这个剪枝完全可以忽略,算法等价于不停对 \([1,n]\) 冒泡直到序列有序,唯一的区别仅有代价不同。但好处在于,以忽略递归的排序算法为基础,容易求出每个位置什么时候成为分割点 \(p\)——即不停对 \([1,n]\) 冒泡,什么时候 \(\forall a_j\in[1,i],~j\in[1,i]\):这个值就是离 \(i\) 最远的满足 \(a_j\in[1,i]\) 的 \(j\) 到 \(i\) 的距离,倒着扫一遍 BIT 维护即可。

  求出每个位置成为分隔点的最早时间 \(t_i\),接下来的做法包括但不限于:

  • 按题意模拟!启发式分裂模拟排序算法,\(\mathcal O(n\log n)\);
  • 单调栈!扫一遍就行,\(\mathcal O(n)\);
  • 算每个点的贡献!排序 \(\max\{t_{i-1},t_{i+1}\}\) 次之后,\(i\) 才会变成长度为 \(1\) 的区间,这就是对答案的贡献,\(\mathcal O(n)\)。

\(\mathcal{Code}\)

  按题意模拟好啊,脑细胞多精贵啊。(

  注意洛谷原题中,算法会先冒泡一次再检查分割点,细节需要改改。

/*~Rainybunny~*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) inline char fgc() {
static char buf[1 << 17], *p = buf, *q = buf;
return p == q && ( q = buf + fread( p = buf, 1, 1 << 17, stdin ), p == q )
? EOF : *p++;
} template<typename Tp = int>
inline Tp rint() {
Tp x = 0; int f = 1; char s = fgc();
for ( ; s < '0' || '9' < s; s = fgc() ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = fgc() ) x = x * 10 + ( s ^ '0' );
return x * f;
} template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
} inline void chkmax( int& a, const int b ) { a < b && ( a = b ); }
inline int imin( const int a, const int b ) { return a < b ? a : b; } const int MAXN = 1e5, MAXLG = 16;
int n, a[MAXN + 5], dc[MAXN + 5], st[MAXN + 5][MAXLG + 5], bitw[MAXN + 5];
long long ans; struct BIT {
int val[MAXN + 5];
inline void upd( int x, const int v ) {
for ( ; x <= n; x += x & -x ) chkmax( val[x], v );
}
inline int ask( int x ) {
int ret = 0;
for ( ; x; x -= x & -x ) chkmax( ret, val[x] );
return ret;
}
} bit; inline int qmin( const int l, const int r ) {
int k = bitw[r - l + 1];
return imin( st[l][k], st[r - ( 1 << k ) + 1][k] );
} inline void solve( const int l, const int r, const int las ) {
if ( l == r ) return ;
int firc = qmin( l, r - 1 ), p = 0;
for ( int len = 0; /* solution always exists */; ++len ) {
if ( st[l + len][0] == firc ) { p = l + len; break; }
if ( st[r - 1 - len][0] == firc ) { p = r - len - 1; break; }
}
ans += ( r - l + 1ll ) * ( firc - las );
solve( l, p, firc ), solve( p + 1, r, firc );
} int main() {
freopen( "sort.in", "r", stdin );
freopen( "sort.out", "w", stdout ); n = rint();
rep ( i, 1, n ) a[i] = dc[i] = rint();
std::sort( dc + 1, dc + n + 1 ); // no need to unique.
// assert( std::unique( dc + 1, dc + n + 1 ) - dc - 1 == n );
rep ( i, 1, n ) a[i] = std::lower_bound( dc + 1, dc + n + 1, a[i] ) - dc; bit.upd( a[n], n );
per ( i, n - 1, 1 ) {
if ( ( st[i][0] = bit.ask( i ) ) ) st[i][0] -= i;
bit.upd( a[i], i );
} rep ( i, 2, n ) bitw[i] = bitw[i >> 1] + 1;
for ( int j = 1; 1 << j <= n; ++j ) {
rep ( i, 1, n - ( 1 << j ) + 1 ) {
st[i][j] = imin( st[i][j - 1], st[i + ( 1 << j >> 1 )][j - 1] );
}
} solve( 1, n, 0 );
wint( ans ), putchar( '\n' );
return 0;
}

Solution -「洛谷 P4372」Out of Sorts P的更多相关文章

  1. Note/Solution -「洛谷 P5158」「模板」多项式快速插值

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \((x_i,y_i)\),求一个不超过 \(n-1\) 次的多项式 \(f(x)\),使得 \(f(x ...

  2. Solution -「洛谷 P4198」楼房重建

    \(\mathcal{Description}\)   Link.   给定点集 \(\{P_n\}\),\(P_i=(i,h_i)\),\(m\) 次修改,每次修改某个 \(h_i\),在每次修改后 ...

  3. Solution -「洛谷 P6577」「模板」二分图最大权完美匹配

    \(\mathcal{Description}\)   Link.   给定二分图 \(G=(V=X\cup Y,E)\),\(|X|=|Y|=n\),边 \((u,v)\in E\) 有权 \(w( ...

  4. Solution -「洛谷 P6021」洪水

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的带点权树,删除 \(u\) 点的代价是该点点权 \(a_u\).\(m\) 次操作: 修改单点点权. ...

  5. Solution -「洛谷 P4719」「模板」"动态 DP" & 动态树分治

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个结点的带权树,\(m\) 次单点点权修改,求出每次修改后的带权最大独立集.   \(n,m\le10^5 ...

  6. Solution -「洛谷 P5236」「模板」静态仙人掌

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的仙人掌,\(q\) 组询问两点最短路.   \(n,q\le10^4\),\(m\ ...

  7. Solution -「洛谷 P4320」道路相遇

    \(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),询问 \(u\) 到 ...

  8. Solution -「洛谷 P5827」边双连通图计数

    \(\mathcal{Description}\)   link.   求包含 \(n\) 个点的边双连通图的个数.   \(n\le10^5\). \(\mathcal{Solution}\)    ...

  9. Solution -「洛谷 P5827」点双连通图计数

    \(\mathcal{Description}\)   link.   求有 \(n\) 个结点的点双连通图的个数,对 \(998244353\) 取模.   \(n\le10^5\). \(\mat ...

随机推荐

  1. spring boot 集群 + Nginx --- 心得

    1.前言 已经掌握了spring cloud 得使用 ,但这是在内部网络做业务 ,现在需要 在外部网络 访问内部网络 服务 ,引入了 服务端负载均衡 Nginx , Nginx 根据预定的策略 ,将请 ...

  2. JS 判断上传文件类型

    var video_src_file = $("#video_src_file").val(); var fileTypes = new Array("flv" ...

  3. flutter之搭建环境

    一. 环境搭建1.安装Flutter SDK 使用Flutter开发,首先我们需要安装一个Flutter的SDK. 下载Flutter的SDK 来到Flutter的官网网站,选择最新稳定的Flutte ...

  4. kafka学习笔记(三)kafka的使用技巧

    概述 上一篇随笔主要介绍了kafka的基本使用包括集群参数,生产者基本使用,consumer基本使用,现在来介绍一下kafka的使用技巧. 分区机制 我们在使用 Apache Kafka 生产和消费消 ...

  5. session反序列化

    先来了解一下关于session的一些基础知识 什么是session?在计算机中,尤其是在网络应用中,称为"会话控制".Session 对象存储特定用户会话所需的属性及配置信息.这样 ...

  6. 浅谈xss漏洞

    0x00 xss漏洞简介 XSS漏洞是Web应用程序中最常见的漏洞之一.如果您的站点没有预防XSS漏洞的固定方法, 那么很可能就存在XSS漏洞. 跨站脚本攻击是指恶意攻击者往Web页面里插入恶意Scr ...

  7. spring 事务传播性

    一.什么是事务传播性 大白话讲就是,方法之间互相调用的时候,事务如何传播,比如A()调用B(),B()的事务是和A()共用一个事务(失败一起提交)? 还是新事务(两者事务互不影响)?,还是说B()不需 ...

  8. gin中绑定表单数据至自定义结构体

    package main import "github.com/gin-gonic/gin" type StructA struct { FieldA string `form:& ...

  9. DQL语句总结

    6.DQL语句总结 select ... from ... where ... group by ... having ... order by ... limit .... 执行顺序? 1,from ...

  10. Tomcat-部署web工程方式

    Tomcat(部署web工程) 第一种方法:只需要把web工程的目录拷贝到Tomcat的webapps目录下即可 1,在webapps目录下创建一个book工程, 2,或者把做的工程内容拷贝到weba ...