\(\mathcal{Description}\)

  Link.

  给定序列 \(\{a_n\}\) 和 \(m\) 个操作,第 \(i\) 个操作有 \(p_i\) 的概率将 \([l_i,r_i]\) 内的元素 \(+1\)。且保证任意两个区间要么不交,要么有包含关系。求所有操作完成后序列最大值的期望。

  \(n\le10^5\),\(m\le5000\)。

\(\mathcal{Solution}\)

  首先应当知道,\(E(\max\{a_i\})\not=\max\{E(a_i)\}\)(不然还需要做嘛 qwq),这是由于每个数的期望值是不独立的。

  从题目奇怪的限制入手——各区间构成树形关系,整个序列上的区间构成一片森林。不妨加入第 \(m+1\) 个操作区间,满足 \(l_{m+1}=1,r_{m+1}=n,p_{m+1}=0\),区间就构成一棵严格的树了。

  考虑树上 DP,令 \(f(u,i)\) 表示操作完 \(u\) 子树内的所有操作后,区间最大值 \(\le i\) 的概率。同时注意到 \(m\) 相较于值域大小 \(10^9\) 非常小,所以很多数是不可能成为最大值的。记 \(u\) 子树所代表的区间内初始元素的最大值 \(mx_u\),不难发现仅有 \(k\in[mx_u,mx_u+m]\) 的 \(f(u,k)\) 有意义,而其余 \(f(u,k)\) 要不为 \(0\) 要不为 \(1\),没有记录的必要。那么状态就能优化为操作完 \(u\) 子树内的所有操作后,区间最大值 \(\le i+mx_u\) 的概率,并保证 \(i\in[0,m]\)。转移就简单了:

\[f(u,i)=p_i\prod_vf(v,mx_u-mx_v+i-1)+(1-p_i)\prod_vf(v,mx_u-mx_v+i)
\]

  注意单独计算 \(f(u,0)\),因为其前一项应取 \(0\)。

  复杂度 \(\mathcal O(n\log n+m^2)\)。(前一项为预处理 ST 表复杂度。)

\(\mathcal{Code}\)

#include <cstdio>
#include <vector>
#include <algorithm> const int MAXN = 1e5, MAXLG = 16, MAXM = 5000;
int n, m, mxa, a[MAXN + 5], lg[MAXN + 5], st[MAXN + 5][MAXLG + 5];
std::vector<int> tree[MAXM + 5];
double f[MAXM + 5][MAXM + 5]; inline void chkmax ( int& a, const int b ) { if ( a < b ) a = b; } inline int min_ ( const int a, const int b ) { return a < b ? a : b; } inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} inline int qmax ( const int l, const int r ) {
int k = lg[r - l + 1], ret = st[l][k];
return chkmax ( ret, st[r - ( 1 << k ) + 1][k] ), ret;
} struct Section {
int l, r, mx; double p;
inline void read () {
l = rint (), r = rint (), mx = qmax ( l, r );
scanf ( "%lf", &p );
}
inline bool operator < ( const Section t ) const {
return l ^ t.l ? l < t.l : r > t.r;
}
} sec[MAXM + 5]; inline void solve ( const int u ) {
for ( int v: tree[u] ) solve ( v );
f[u][0] = 1 - sec[u].p;
for ( int v: tree[u] ) f[u][0] *= f[v][sec[u].mx - sec[v].mx];
for ( int i = 1; i <= m; ++ i ) {
double p = 1, q = 1;
for ( int v: tree[u] ) {
p *= f[v][min_ ( sec[u].mx + i - sec[v].mx - 1, m )];
q *= f[v][min_ ( sec[u].mx + i - sec[v].mx, m )];
}
f[u][i] = sec[u].p * p + ( 1 - sec[u].p ) * q;
}
} int main () {
n = rint (), m = rint ();
for ( int i = 1; i <= n; ++ i ) chkmax ( mxa, a[i] = st[i][0] = rint () );
for ( int i = 2; i <= n; ++ i ) lg[i] = lg[i >> 1] + 1;
for ( int j = 1; 1 << j <= n; ++ j ) {
for ( int i = 1; i + ( 1 << j ) - 1 <= n; ++ i ) {
chkmax ( st[i][j] = st[i][j - 1], st[i + ( 1 << j >> 1 )][j - 1] );
}
}
for ( int i = 1; i <= m; ++ i ) sec[i].read ();
sec[++ m] = { 1, n, qmax ( 1, n ), 0.0 };
std::sort ( sec + 1, sec + m + 1 );
for ( int i = 2; i <= m; ++ i ) {
for ( int j = i - 1; j; -- j ) {
if ( sec[j].l <= sec[i].l && sec[i].r <= sec[j].r ) {
tree[j].push_back ( i );
break;
}
}
}
solve ( 1 );
double ans = 0;
for ( int i = 0; i <= m; ++ i ) {
ans += ( i + mxa ) * ( f[1][i] - f[1][i - 1] );
}
printf ( "%.12f\n", ans );
return 0;
}

Solution -「CF 494C」Helping People的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. vue-cli axios封装(element-ui)

    1.http.js /** * * http配置 */ import axios from 'axios'import { Loading, Message } from 'element-ui' / ...

  2. MySQL使用时间作为判断条件

    背景:在开发过程中,我们经常需要根据时间作为判断条件来查询数据,例如:当月,当日,当前小时,几天内...... 1. 当月 我们只需要使用一个mysql的MONTH(date)函数即可实现.(注意判断 ...

  3. Mysql存储过程二

    1.MySQL中创建存储过程时通过DEFINER和SQL SECURITY设置访问权限 procedure与function.trigger等创建时紧接着CREATE都有个definer可选项,该de ...

  4. 纯手画WinForm的Alert提示弹出框

    纯手画WinForm的Alert弹框 一.窗体设置 设置以下属性: 属性名 属性值 说明 AutoScaleMode None 确定屏幕分辨率或字体更改时窗体如何缩放 BackColor 103, 1 ...

  5. UML 有关用例图知识及用例关系

    原文链接:https://blog.csdn.net/mj_ww/article/details/53020080 1. 如何识别用例 任何用例都不能在缺少参与者的情况下独立存在.同样,任何参与者也必 ...

  6. gin框架中请求参数的绑定与多数据格式处理

    package main import ( "fmt" "github.com/gin-gonic/gin" ) // gin框架提供给开发者表单实体绑定的功能 ...

  7. golang中的GOPATH使用和简单项目配置

    GOPATH 是 Go 语言的工作目录,他的值可以是一个目录路径,也可以是多个目录路径,每个目录都代表 go 语言的一个工作区. 我们开发 Golang 项目时,需要依赖一些别的代码包,这些包的存放路 ...

  8. memcached 小记

    Memcached是一个自由开源的,高性能,分布式内存对象缓存系统. Memcached是一种基于内存的key-value存储,用来存储小块的任意数据(字符串.对象).这些数据可以是数据库调用.API ...

  9. 单例模式的各种实现方式(Java)

    单例模式的基础实现方式 手写普通的单例模式要点有三个: 将构造函数私有化 利用静态变量来保存全局唯一的单例对象 使用静态方法 getInstance() 获取单例对象 懒汉模式 懒汉模式指的是单例对象 ...

  10. Typora基础快捷键使用流程

    Typora简介 Typora是一个所见即所得的Markdown格式文本编辑器,支持windows.macOS和GNU\Linux操作系统,包括对GitHub Flavored Markdown扩展格 ...