Solution -「CF 1025G」Company Acquisitions
\(\mathcal{Description}\)
Link.
\(n\) 个公司,每个公司可能独立或者附属于另一个公司。初始时,每个公司附属于 \(a_i\)(\(a_i=-1\) 表示该公司独立)。不存在两级及以上的附属关系。每次事件随机选取两个独立的公司,使其中一个公司所拥有的附属公司全部独立,并且该公司成为另一个公司的附属。求使仅存在一个独立公司的期望操作次数。对 \(10^9+7\) 取模。
\(n\le500\)。
\(\mathcal{Solution}\)
奇怪的解题姿势增加了!
记一个公司的势能函数 \(\phi(i)=2^{s_i}-1\),其中 \(s_i\) 为该公司拥有的结点个数。并记 \(\phi(S)\) 为局面 \(S\) 的势能函数,有:
\]
那么,结束局面 \(T\) 的势能函数 \(\phi(T)=2^{n-1}-1\)。
考虑单次事件对势能的影响。对于局面 \(S\) 中一次作用在两个独立公司 \(u,v\) 上的事件,有:
E(\Delta\phi)&=E(\phi(S'))-\phi(S)\\
&=\frac{1}2((2^{s_u}-1)+(2^{s_v}-1))-(2^{s_u-1}-1)-(2^{2_v-1}-1)\\
&=-1+2\\
&=1
\end{align}
\]
一次事件在期望意义下会让局面的势能 \(+1\)!所以期望事件个数就是势能的期望变化次数。即:
\]
其中 \(S\) 是初始局面,\(T\) 即上文结束局面。输出这个值就好啦!
复杂度 \(\mathcal O(n)\)。
\(\mathcal{Code}\)
#include <cstdio>
const int MAXN = 500, MOD = 1e9 + 7;
int n, d[MAXN + 5];
inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
}
int main () {
scanf ( "%d", &n );
int ans = ( MOD + qkpow ( 2, n - 1 ) - 1 ) % MOD;
for ( int i = 1, f; i <= n; ++ i ) {
scanf ( "%d", &f );
if ( ~ f ) d[i] = -1, ++ d[f];
}
for ( int i = 1; i <= n; ++ i ) {
if ( ~ d[i] ) {
ans = ( ans - qkpow ( 2, d[i] ) + 1 + MOD ) % MOD;
}
}
printf ( "%d\n", ans );
return 0;
}
Solution -「CF 1025G」Company Acquisitions的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- springboot插件打包跳过单元测试
只需在pom.xml添加如下即可 <skipTests>true</skipTests> pom文件如下 <?xml version="1.0" en ...
- Echart可视化学习(十)
文档的源代码地址,需要的下载就可以了(访问密码:7567) https://url56.ctfile.com/f/34653256-527823386-04154f 官网找到类似实例, 适当分析,并且 ...
- vue3.0+vue-cli3.0项目搭建
因为需要兼容其他vue2.0的项目,所以先卸载vue-cli,再全局安装桥接工具 卸载vue-cli2.0 npm uninstall vue-cli -g 安装vue-cli3.0 npm inst ...
- 大数据安全与RANGER学习和使用
概述 再说ranger之前需要明白一下大数据的安全体系的整体介绍,安全体系其实也就是权限可控,先说说权限:权限管理的目标,绝对不是简单的在技术层面建立起用户,密码和权限点的映射关系这么简单的事,更重要 ...
- 浅解XXE与Portswigger Web Sec
XXE与Portswigger Web Sec 相关链接: 博客园 安全脉搏 FreeBuf 简介XML XML,可扩展标记语言,标准通用标记语言的子集.XML的简单易于在任何应用程序 ...
- Java 各个版本中的新特性
新特性你知道多少? Java 8 Lambda 表达式 接口增加默认方法等 方法引用 流 Stream Java 9 模块系统 交互式工具jshell .of() 创建不可变集合 接口支持私有方法 更 ...
- AOP-底层原理(JDK动态代理实现)
AOP(JDK动态代理) 1,使用JDK动态代理,使用Proxy类里面的方法创建代理对象 (1)调用 newProxyInstance 方法 方法有三个参数 第一参数,类加载器 第二参数,增强方法所在 ...
- linux下查看开放的端口
Nmap是一款针对大型网络的端口扫描工具,它也适用于单机扫描,它支持很多扫描,也同时支持性能和可靠性统计. [root@localhost ~]# yum install namp [root@loc ...
- python 小兵(5)参数
我们目前为止,已经可以完成一些软件的基本功能了,那么我们来完成这样一个功能:约x 1 2 3 4 5 pint("拿出手机") print("打开陌陌") pr ...
- Ubuntu18.04 显卡驱动安装(解决各种疑难杂症)
步骤 下载驱动 准备工作 进行安装 检查安装 下载驱动 首先我们需要去官网下载显卡驱动 打开浏览器,在百度搜索框中搜索:显卡驱动 下载 在手动搜索驱动程序一栏,根据自己的显卡进行选择 产品系列中,No ...