题意

求\(\sum_{i}^{n} gcd(i,n)\)

想法

套路题

\(\sum_{i}^{n} gcd(i,n)\) \(=\) \(\sum_{i,i | n} i * phi(n/i)\)

枚举\(i\)暴力求\(phi\)

代码

#include<iostream>
#include<cstdio>
#include<cmath>
#define ll long long ll n; ll phi(ll now){
ll ans = now;
for(ll i = 2;i * i <= now;++i){
if(now % i == 0){
ans = ans / i * (i - 1);
while(now % i == 0) now /= i;
}
}
if(now > 1) ans = ans / now * (now - 1);
return ans;
} ll ans = 0; int main(){
scanf("%lld",&n);
ll s = sqrt(n);
for(ll i = 1;i <= s;++i){
if(n % i == 0){
ans += phi(n / i) * i;
if(i * i != n)
ans += phi(i) * (n / i);
}
}
std::cout<<ans<<std::endl;
}

[SDOI2012] Longge 的问题的更多相关文章

  1. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  2. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  3. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  4. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  5. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  6. BZOJ 2705: [SDOI2012]Longge的问题( 数论 )

    T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...

  7. 洛谷 P2303 [SDOi2012]Longge的问题 解题报告

    P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...

  8. BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】

    BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...

  9. 【bzoj2705】[SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2507  Solved: 1531[Submit][ ...

  10. [SDOi2012]Longge的问题 (数论)

    Luogu2303 [SDOi2012]Longge的问题 题目 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N, ...

随机推荐

  1. UltraSoft - Beta - Scrum Meeting 3

    20200519会议纪要 Date: May 19th, 2020. Scrum 情况汇报 进度情况 组员 负责 今日进度 q2l PM.后端 暂无 Liuzh 前端 暂无 Kkkk 前端 完成了前端 ...

  2. BUAA_2020_软件工程_结对项目作业

    项目 内容 这个作业属于哪个课程 班级博客 这个作业的要求在哪里 作业要求 我在这个课程的目标是 掌握软件工程的思路方法 这个作业在哪个具体方面帮助我实现目标 学习结对编程 教学班级 006 项目地址 ...

  3. BUAA2020软工作业(四)——结对项目

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 结对项目作业 我在这个课程的目标是 进一步提高自己的编码能力,工程能力,团队协作能力 这个作业在哪 ...

  4. Noip模拟12 2021.7.12

    T1 interval 亏得昨天晚上改掉了T3并且理解了单调栈,今天一扫这题目就知道要用啥了. 先预处理出以a[i]为最大值的最大左右区间.然后再将a[i]取%!!!是的,要不然会影响单调栈的使用.. ...

  5. AFO记

    希望永远也不要动笔写这个. 发以自勉

  6. vs2010中release模式下调试程序

    debug模式调试信息全,但是速度很慢,在数据量比较大的时候非常影响调试效率,release模式速度快,但是没有调试信息.所以在编译的时候很多编译器会提供一种折中的编译方式,在release下提供调试 ...

  7. [hi3521] nand flash 的 boot 启动模式的区别?

    spi nand flash 的 boot 启动模式选择.0:1 线 boot:1:4 线 boot.请问,1线boot和4线boot有什么区别呢?该如何选择呢?     收藏 顶 踩   回复 使用 ...

  8. 你一定不知道的Unsafe用法

    Unsafe是什么 首先我们说Unsafe类位于rt.jar里面sun.misc包下面,Unsafe翻译过来是不安全的,这倒不是说这个类是不安全的,而是说开发人员使用Unsafe是不安全的,也就是不推 ...

  9. 转移指令原理和Inline Hook

    目录 转移指令原理和Inline Hook 转移指令 操作符offset jmp指令 根据位移进行转移的jmp指令 插播HOOK知识 Inline Hook Inline Hook 原理 Hook代码 ...

  10. redis开外网访问

    Redis: 注释掉bind 127.0.0.1可以使所有的ip访问redis 若是想指定多个ip访问,但并不是全部的ip访问,可以bind protected-mode no /etc/init.d ...