显然,能从$l$到$r$当且仅当$[l,r)$中的灯全部都亮,以下不妨令询问的$r$全部减1

当修改节点$x$时,找到包含$x$的极大的灯(除$x$以外)全部都亮的区间$[l,r]$,即令$l_{0}\in [l,x]$且$r_{0}\in [x,r]$的询问答案加上或减去$\Delta t$(其中$\Delta t$为该询问时刻-当前修改时刻)

可以将其看作一个一次函数的形式(关于询问时刻,当然斜率只为0或1),那么问题即变为支持矩阵加(可负)和单点查询,差分后也相当于是三维偏序问题,cdq分治+线段树即可

时间复杂度为$o(n\log^{2}n)$,可以通过

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 300005
4 #define L (k<<1)
5 #define R (L+1)
6 #define mid (l+r>>1)
7 #define pii pair<int,int>
8 #define mp make_pair
9 #define fi first
10 #define se second
11 struct Data{
12 int p,x,y;
13 pii z;
14 }a[N<<3];
15 vector<Data>v;
16 pii sum[N<<2];
17 int E,n,m,q,t,x,y,vis[N],ans[N],f[N<<2];
18 char s[N];
19 bool cmp(Data x,Data y){
20 return (x.x>y.x)||(x.x==y.x)&&(x.p<y.p);
21 }
22 pii merge(pii x,pii y){
23 return mp(x.fi+y.fi,x.se+y.se);
24 }
25 void update(int k,int l,int r,int x,pii y){
26 sum[k]=merge(sum[k],y);
27 if (l==r)return;
28 if (x<=mid)update(L,l,mid,x,y);
29 else update(R,mid+1,r,x,y);
30 }
31 pii query(int k,int l,int r,int x,int y){
32 if ((l>y)||(x>r))return mp(0,0);
33 if ((x<=l)&&(r<=y))return sum[k];
34 return merge(query(L,l,mid,x,y),query(R,mid+1,r,x,y));
35 }
36 void update(int k,int l,int r,int x){
37 if (l==r){
38 f[k]^=1;
39 return;
40 }
41 if (x<=mid)update(L,l,mid,x);
42 else update(R,mid+1,r,x);
43 f[k]=f[L]+f[R];
44 }
45 int getl(int k,int l,int r,int x){
46 if ((l>=x)||(r<x)&&(f[k]==r-l+1))return 0;
47 if (l==r)return l;
48 int ans=getl(R,mid+1,r,x);
49 if (ans)return ans;
50 return getl(L,l,mid,x);
51 }
52 int getr(int k,int l,int r,int x){
53 if ((r<=x)||(l>x)&&(f[k]==r-l+1))return n+1;
54 if (l==r)return l;
55 int ans=getr(L,l,mid,x);
56 if (ans<=n)return ans;
57 return getr(R,mid+1,r,x);
58 }
59 void update(int k,int id){
60 update(1,1,n,k);
61 vis[k]^=1;
62 int l=getl(1,1,n,k)+1,r=getr(1,1,n,k)-1;
63 pii o1=mp(1,-id),o2=mp(-1,id);
64 if (!vis[k])swap(o1,o2);
65 a[++t]=Data{0,k,r,o1};
66 if (k>1)a[++t]=Data{0,k,k-1,o2};
67 if (l>1)a[++t]=Data{0,l-1,r,o2};
68 if ((k>1)&&(l>1))a[++t]=Data{0,l-1,k-1,o1};
69 }
70 void query(int x,int y,int id){
71 a[++t]=Data{1,x,y,mp(id,++q)};
72 }
73 void calc(int l,int r){
74 if (l==r)return;
75 v.clear();
76 for(int i=l;i<=mid;i++)
77 if (!a[i].p)v.push_back(a[i]);
78 for(int i=mid+1;i<=r;i++)
79 if (a[i].p)v.push_back(a[i]);
80 sort(v.begin(),v.end(),cmp);
81 for(int i=0;i<v.size();i++)
82 if (!v[i].p)update(1,1,n,v[i].y,v[i].z);
83 else{
84 pii o=query(1,1,n,v[i].y,n);
85 ans[v[i].z.se]+=o.fi*v[i].z.fi+o.se;
86 }
87 for(int i=0;i<v.size();i++)
88 if (!v[i].p)update(1,1,n,v[i].y,mp(-v[i].z.fi,-v[i].z.se));
89 calc(l,mid);
90 calc(mid+1,r);
91 }
92 int main(){
93 scanf("%d%d%s",&n,&m,s+1);
94 for(int i=1;i<=n;i++)
95 if (s[i]=='1')update(i,0);
96 for(int i=1;i<=m;i++){
97 scanf("%s%d",s,&x);
98 if (s[0]=='t')update(x,i);
99 else{
100 scanf("%d",&y);
101 query(x,y-1,i);
102 }
103 }
104 calc(1,t);
105 for(int i=1;i<=q;i++)printf("%d\n",ans[i]);
106 }

[loj3146]路灯的更多相关文章

  1. LOJ3146 APIO2019路灯(cdq分治+树状数组)

    每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...

  2. 洛谷P1220关路灯[区间DP]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  3. CODEVS 1258 关路灯

    写动归终于能不看题解一次A了!(其实交了两次,一次80一次A) 我练功发自真心! 题目描述 Description 多瑞卡得到了一份有趣而高薪的工作.每天早晨他必须关掉他所在村庄的街灯.所有的街灯都被 ...

  4. ZigBee无线网络技术在小区路灯照明系统的应用

    小区路灯照明系统是楼宇智能的一部分,但受制于布线.成本等的问题,难以得以实施.随着计算机技术的迅猛发展,无线网络技术越来越成熟,ZigBee无线网络成本低.功耗低.传输距离远等的特点,非常适合在无线路 ...

  5. [CODEVS1258]关路灯

    题目描述 Description 多瑞卡得到了一份有趣而高薪的工作.每天早晨他必须关掉他所在村庄的街灯.所有的街灯都被设置在一条直路的同一侧. 多瑞卡每晚到早晨5点钟都在晚会上,然后他开始关灯.开始时 ...

  6. 洛谷P1220 关路灯

    洛谷1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关 ...

  7. [动态规划]P1220 关路灯

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  8. 关路灯,洛谷dp

    题目传送门https://www.luogu.org/problem/show?pid=1220 我们假设 dpij0 为目前最优值是在 i 位置,dpij1 为目前最优值是在 j 位置则 i 到 j ...

  9. 【luogu1220】关路灯

    https://www.luogu.org/problem/show?pid=1220 假如当前老张在a处跑去关掉b处的路灯,那么a与b之间的路灯都可以顺手关掉.因此每一时刻关掉的路灯必定是连续的. ...

随机推荐

  1. canvas 实现简单的画板功能添加手机端效果 1.01

    在上次的基础上,加了一些代码,手机端可操作 访问网址:https://chandler712.github.io/Item/ <!-- 简单版画板 --> <!DOCTYPE htm ...

  2. (googlechrome)未知错误导致安装失败,如果googlechrome....

    ​https://jingyan.baidu.com/article/ea24bc39ffb699da63b33147.html#5827690-tsina-1-63512-fe183374908e7 ...

  3. NOI 2016 Day1 题解

    今天写了NOI2016Day1的题,来写一发题解. T2 网格 题目传送门 Description \(T\) 次询问,每次给出一个 \(n\times m\) 的传送门,上面有 \(c\) 个位置是 ...

  4. Spirit带你了解如何安全引入第三方资源

    Spirit带你了解如何安全的引入第三方资源 本文介绍一下如何安全的引入第三方资源 同源策略(SOP) 首先我们来了解一下什么是同源策略,下面的是wiki百科的定义 同源策略是指Web浏览器中,允许某 ...

  5. mysql select语句查询流程是怎么样的

    select查询流程是怎么样的 mysql select查询的数据是查询内存里面,如果没有查询的数据没有在内存,就需要mysql的innodb引擎读取磁盘,将数据加载的内存后在读取.这就体现了,mys ...

  6. Object.create 和 Object.assign

    Object.assign(target, ...source) 1.Object.assign方法只会拷贝源对象自身(不包括原型)的并且可枚举的属性到目标对象,使用源对象的get和目标对象的set, ...

  7. 单机CentOS 安装 TiDB

    目录 一.官网教程 二.安装步骤 1.下载并安装 TiUP: 2.声明一下环境变量,否则会找不到 tiup 命令 3.安装 TiUP 的 cluster 组件: 4.官方教程说,由于模拟多机部署,需要 ...

  8. 【UE4 设计模式】命令模式 Command Pattern

    概述 描述 将一个请求封装为一个对象,从而使我们可用不同的请求对客户进行参数化:对请求排队或者记录请求日志,以及支持可撤销的操作. 命令模式是一种对象行为型模式,其别名为动作(Action)模式或事务 ...

  9. Noip模拟33垫底反思 2021.8.8

    T1 Hunter 考场上没写$%p$挂了25分.也是很牛皮,以后打完过了样例一定要检查 因为样例太小了......很容易忘记%%%% 正解随便手模就出来了. 1 #include<bits/s ...

  10. linux wifi热点服务脚本

    最近有关wifi热点的驱动,启动参数都调试完了,验证可以连接传输数据. 首先要在系统启动脚本中插入wifi驱动,配置wlan0的ip insmod /system/vendor/modules/818 ...