题目传送门

注意

同性必定不同色

必有一个同色异性,且不相互不喜欢

Solution

我们发现,我们问题比较大的就是如何确定性别问题。我们可以一个一个加进去,在原来已经确定了的二分图上增加新的性别关系,这个可以用线段树上二分找到。

设找到的集合为 \(S\),元素为 \(S_0,S_1,...\),那么你可以发现 \(|S|\) 只有两种情况。

  1. \(|S|=1\)

这种时候说明 \(L_{L_x}=x\),所以 \(S_0\) 就是与 \(x\) 同色的。

  1. \(|S|=3\)

这个时候 \(S_0,S_1,S_2\) 就是喜欢 \(x\),被 \(x\) 喜欢的,以及与 \(x\) 同色的异性的。找到与 \(x\) 同色的很简单,直接选两个出来,如果 \(Query(p)=1\) 的话就说明剩下哪一个就是 \(x\) 喜欢的异性。

Code

#include "chameleon.h"
#include<bits/stdc++.h>
using namespace std; #define Int register int
#define MAXN 1005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
template <typename T> inline void chkmax (T &x,T y){x = max (x,y);}
template <typename T> inline void chkmin (T &x,T y){x = min (x,y);} vector <int> G[MAXN];
bool b[MAXN],used[MAXN];
int n,t[2][MAXN],col[MAXN],lov[MAXN],siz[2]; void dfs (int x,int c){
col[x] = c;
for (Int to : G[x]) if (col[to] == -1) dfs (to,c ^ 1);
} void getcol (int x){
for (Int i = 1;i < x;++ i) col[i] = -1;
for (Int i = 1;i < x;++ i) if (col[i] == -1) dfs (i,0);
siz[0] = siz[1] = 0;
for (Int i = 1;i < x;++ i) t[col[i]][++ siz[col[i]]] = i;
} bool checkit (int c,int l,int r,int x){
vector <int> S;S.clear (),S.push_back (x);
for (Int i = l;i <= r;++ i) if (!b[t[c][i]]) S.push_back (t[c][i]);
return Query (S) < S.size();
} int findit (int c,int l,int r,int x){
if (l == r) return t[c][l];
int mid = (l + r) >> 1;
return checkit (c,l,mid,x) ? findit (c,l,mid,x) : findit (c,mid + 1,r,x);
} void makeit (int Sn){
int n = Sn << 1;
for (Int i = 1;i <= n;++ i){
getcol (i),memset (b,0,sizeof (b));
for (Int c = 0;c < 2;++ c){
while (checkit (c,1,siz[c],i)){
int pos = findit (c,1,siz[c],i);
G[i].push_back (pos),G[pos].push_back (i),b[pos] = 1;
}
}
}
vector <int> S;S.resize (3);
for (Int i = 1;i <= n;++ i){
if (G[i].size() == 1){
if (used[i]) continue;
used[i] = used[G[i][0]] = 1,Answer (i,G[i][0]);
continue;
}
S[0] = i,S[1] = G[i][0],S[2] = G[i][1];
if (Query (S) == 1){
swap (G[i][0],G[i][2]),lov[G[i][0]] = i;
continue;
}
S[2] = G[i][2];
if (Query (S) == 1){
swap (G[i][0],G[i][1]),lov[G[i][0]] = i;
continue;
}
lov[G[i][0]] = i;
}
for (Int i = 1;i <= n;++ i) if (!used[i]){
if (lov[i] == G[i][1]) Answer (i,G[i][2]),used[i] = used[G[i][2]] = 1;
else Answer (i,G[i][1]),used[i] = used[G[i][1]] = 1;
}
} void Solve (int N){
makeit (N);
}

「JOISC 2020 Day2」变态龙之色 题解的更多相关文章

  1. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  2. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  3. [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]

    题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...

  4. bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4244 https://loj.ac/problem/2878 题解 挺妙的一道题. 一开始一直 ...

  5. LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS

    这种图论问题都挺考验小思维的. 首先,我们把从 $x$ 连出去两条边的都合并了. 然后再去合并从 $x$ 连出去一条原有边与一条新边的情况. 第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可 ...

  6. LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA

    非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...

  7. 「JOISC 2020 Day4」首都城市

    题目   点这里看题目. 分析   做法比较容易看出来.我们对于每个城市,找出那些 " 如果这个城市在首都内,则必须在首都内的其它城市 " ,也就是为了让这个城市的小镇连通而必须选 ...

  8. 「JOISC 2020 Day1」汉堡肉

    我终于学会打开机房的LOJ了! description LOJ3272 有\(n(n<=2*10^5)\)个矩形,让你找\(k(k<=4)\)个点可以覆盖所有矩形(点可重复),输出一种方案 ...

  9. 「JOISC 2019 Day3」穿越时空 Bitaro

    「JOISC 2019 Day3」穿越时空 Bitaro 题解: ​ 不会处理时间流逝,我去看了一眼题解的图,最重要的转换就是把(X,Y)改成(X,Y-X)这样就不会斜着走了. ​ 问题变成二维平面上 ...

随机推荐

  1. HCNP Routing&Switching之OSPF虚连接

    前文我们了解了OSPF的网络类型.帧中继交换机映射以及路由器帧中继映射相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15195762.html:今天我 ...

  2. Vue.JS快速上手(组件生命周期)

    一.什么是组件 组成网页独立功能基本单元(片段), 复用.维护.性能, Vue.js中的组件就是一个Vue的实例,Vue中的组件包含data/methods/computed. 一个Vue.js的应用 ...

  3. linux上安装Docker (非常简单的安装方法) 2019

    Docker的三大核心概念:镜像.容器.仓库 镜像:类似虚拟机的镜像.用俗话说就是安装文件. 容器:类似一个轻量级的沙箱,容器是从镜像创建应用运行实例, 可以将其启动.开始.停止.删除.而这些容器都是 ...

  4. vue+Element-ui 的 el-cascader 做高德地图的省市区三级联动并且是异步加载,点击省市区跳转到对应的区(地图可以通过后端返回的点进行标点)

    // 完整版高德地图,可以复制代码直接使用 index.html <script type="text/javascript" src="https://webap ...

  5. go 发送post请求(键值对、上传文件、上传zip)

    一.post请求的Content-Type为键值对 1.PostForm方式 package main import ( "net/http" "net/url" ...

  6. Identity角色管理一(准备工作)

    因角色管理需要有用户才能进行(需要将用户从角色中添加,删除)故角色管理代码依托用户管理 只需在Startup服务中添加角色管理即可完成 public void ConfigureServices(IS ...

  7. 理解ASP.NET Core - [04] Host

    注:本文隶属于<理解ASP.NET Core>系列文章,请查看置顶博客或点击此处查看全文目录 本文会涉及部分 Host 相关的源码,并会附上 github 源码地址,不过为了降低篇幅,我会 ...

  8. Dockerfile常见命令

    Dockerfile结构 Dockerfile的结构分成了若干部分,每个部分之间的先后顺序有明确的要求: 部分 命令 基础镜像信息 FROM 维护者信息 MAINTAINER 镜像操作指令 RUN.C ...

  9. 树莓派OLED模块的使用教程大量例程详解

    简介 Python有两个可以用的OLED库 [Adafruit_Python_SSD1306库]->只支持SSD1306 [Luma.oled库]->支持SSD1306 / SSD1309 ...

  10. php安装imagick扩展

    下面/usr/local/php5是php的安装目录 安装imagickcd /usr/local/srcwget http://pecl.php.net/get/imagick-3.0.1.tgz  ...