2019CCPC Final K. Russian Dolls on the Christmas Tree
题目大意
一棵 \(n(1\leq n\leq 2\times 10^5)\) 个节点以 \(1\) 为根的树,分别求以 \(1\sim n\) 为根的子树中有多少个节点编号连续的段。 \(T(1\leq T\leq 10)\) 组数据, \(\sum_{i=1}^{T}n\leq 10^6\) 。
思路
将子树按 \(dfs\) 序转化为区间,之后求区间内有多少个数字连续的段。我们可以使用树状数组,用一个 \(vis[\space]\) 来记录每个数字是否出现过,我们对区间从前往后遍历,对于每一个数字 \(i\) ,如果 \(i-1,i+1\) 都没有出现过,说明是新的一段,于是在这个位置 \(+1\) ;如果二者仅有一个出现过,说明段数没有变化;如果都出现过,说明有两个段被合并为了一个段,于是需要在这个位置 \(-1\)。这样查询区间 \([1,x]\) 的时候就是对前 \(x\) 个位置上的数求和即可。如果查询的左端点不是 \(1\) 那么我们要考虑去掉左侧不属于查询区间部分的影响,对于其中的每一个数字 \(i\) ,其会影响到 \(i-1,i+1\) 对应位置上的值,因为 \(i\) 是更早出现的,所以此时我们把那两个值 \(+1\) , 将 \(i\) 对应位置上的值置为 \(0\) ,然后对于查询区间 \([l,r]\) ,答案依然是前 \(r\) 个值的和。我们对所有询问按查询的左端点排序,依次查询即可,复杂度 \(O(nlogn)\) 。
代码
#include<bits/stdc++.h>
#include<unordered_map>
#include<unordered_set>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
#define all(x) x.begin(),x.end()
//#define int LL
//#define lc p*2+1
//#define rc p*2+2
#define endl '\n'
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
#pragma warning(disable :4996)
const long double eps = 1e-15;
const LL MOD = 1000000007;
const LL mod = 998244353;
const int maxn = 200010;
int T, N, cnt = 0;
vector<int>G[maxn];
int dfn[maxn], in[maxn], out[maxn], rnk = 0, A[maxn];
bool vis[maxn];
int dat[maxn], n, ans[maxn], val[maxn];
struct Query{
int l, r, id;
}Q[maxn];
bool cmp(const Query& a, const Query& b)
{
return a.l < b.l;
}
void add(int i, int x)
{
while (i <= n)
{
dat[i] += x;
i += i & (-i);
}
}
int sum(int i)
{
int ans = 0;
while (i)
{
ans += dat[i];
i -= i & (-i);
}
return ans;
}
void add_edge(int from, int to)
{
G[from].push_back(to);
G[to].push_back(from);
}
void dfs(int v, int p)
{
in[v] = dfn[v] = ++rnk;
A[dfn[v]] = v;
val[dfn[v]] = 0;
for (int i = 0; i < G[v].size(); i++)
{
int to = G[v][i];
if (to == p)
continue;
dfs(to, v);
}
out[v] = rnk;
}
void solve()
{
rnk = 0;
dfs(1, 0);
n = N;
for (int i = 1; i <= N; i++)
{
if (!vis[A[i] + 1] && !vis[A[i] - 1])
{
add(i, 1);
val[i]++;
}
else if (vis[A[i] + 1] && vis[A[i] - 1])
{
add(i, -1);
val[i]--;
}
vis[A[i]] = true;
}
for (int i = 1; i <= N; i++)
Q[i] = Query({ in[i], out[i], i });
sort(Q + 1, Q + N + 1, cmp);
int nl = 1;
for (int i = 1; i <= N; i++)
{
int l = Q[i].l, r = Q[i].r;
while (nl < l)
{
if (A[nl] != N && dfn[A[nl] + 1] > nl)
{
add(dfn[A[nl] + 1], 1);
val[dfn[A[nl] + 1]]++;
}
if (A[nl] != 1 && dfn[A[nl] - 1] > nl)
{
add(dfn[A[nl] - 1], 1);
val[dfn[A[nl] - 1]]++;
}
add(nl, -val[nl]);
val[nl] = 0;
nl++;
}
ans[Q[i].id] = sum(r);
}
cout << "Case #" << cnt << ": ";
for (int i = 1; i <= N; i++)
cout << ans[i] << (i == N ? endl : ' ');
}
int main()
{
IOS;
cin >> T;
while (T--)
{
memset(vis, false, sizeof(vis));
memset(dat, 0, sizeof(dat));
cnt++;
cin >> N;
int u, v;
for (int i = 1; i <= N; i++)
G[i].clear();
for (int i = 1; i < N; i++)
{
cin >> u >> v;
add_edge(u, v);
}
solve();
}
return 0;
}
2019CCPC Final K. Russian Dolls on the Christmas Tree的更多相关文章
- POJ Big Christmas Tree(最短的基础)
Big Christmas Tree 题目分析: 叫你构造一颗圣诞树,使得 (sum of weights of all descendant nodes) × (unit price of the ...
- POJ3013 Big Christmas Tree[转换 最短路]
Big Christmas Tree Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 23387 Accepted: 5 ...
- poj 3013 Big Christmas Tree (最短路径Dijsktra) -- 第一次用优先队列写Dijsktra
http://poj.org/problem?id=3013 Big Christmas Tree Time Limit: 3000MS Memory Limit: 131072K Total S ...
- poj 3013 Big Christmas Tree Djistra
Big Christmas Tree 题意:图中每个节点和边都有权值,图中找出一颗树,树根为1使得 Σ(树中的节点到树根的距离)*(以该节点为子树的所有节点的权值之和) 结果最小: 分析:直接求出每个 ...
- POJ 3013 Big Christmas Tree(最短Dijkstra+优先级队列优化,SPFA)
POJ 3013 Big Christmas Tree(最短路Dijkstra+优先队列优化,SPFA) ACM 题目地址:POJ 3013 题意: 圣诞树是由n个节点和e个边构成的,点编号1-n. ...
- poj 3013 Big Christmas Tree
Big Christmas Tree Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 20974 Accepted: 4 ...
- Big Christmas Tree(poj-3013)最短路
Big Christmas Tree Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 25823 Accepted: 5 ...
- 2019CCPC秦皇岛 K MUV LUV UNLIMITED(博弈)
MUV LUV UNLIMITED Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- HDU - 5156 Harry and Christmas tree
题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=5156 题意 : 给一颗编号为1-n的以1为根的树, 已知有m个颜色的礼物分布在某些节点上(同一节点 ...
随机推荐
- Clusternet:一款开源的跨云多集群云原生管控利器!
作者 徐迪,Clusternet 项目发起人,腾讯云容器技术专家. 摘要 Clusternet (Cluster Internet)是一个兼具多集群管理和跨集群应用编排的开源云原生管控平台,解决了跨云 ...
- zabbix表达式
system.cpu.load[all,avg1].min(10)}>2 load连续10分钟>2 system.cpu.load[percpu,avg1].count(#3,0.6,&q ...
- linux远程搭建yum网络仓库《全面解析》
目录 一:远程版本需求 1.yum简介 2.yum安装解析 二:yum安装的生命周期 三:yum私有仓库作用与必要性 四:搭建yum私有仓库 本地版本 1.下载必须的软件包 2.创建软件仓库(就是创建 ...
- python数据操作--8
转:https://www.tuicool.com/wx/MB7nieb 数据类型 整数, 浮点数, 字符串, 布林值(True,False) 列表(list), 不可变的列表 Tuple, 集合(没 ...
- 源码安装gitlab
GitLab服务构成 GitLab由以下服务构成: nginx:静态Web服务器 gitlab-shell:用于处理Git命令和修改authorized keys列表 gitlab-workhor ...
- GitHubPages的域名解析信息
github目录下CNAME修改
- linux 常用命令。
/* Linux常用命令? 1 查看 ls 展示当前目录下的可见文件 ls -a 展示当前目录下所有的文件(包括隐藏的文件) ls -l(ll) ...
- vivo直播应用技术实践与探索
一.概述 2019年vivo直播平台立项,初期与优秀的顶部直播平台进行联运直播开发,进行市场,产品和技术的初步探索:再到后来为了丰富直播的内容和形式,开始自己独立探索:之后,我们结合vivo现阶段的直 ...
- UDP数据包最大传输长度
概念以太网(Ethernet)数据帧的长度必须在46-1500字节之间,这是由以太网的物理特性决定的.这个1500字节被称为链路层的MTU(最大传输单元). 但这并不是指链路层的长度被限制在1500字 ...
- Android 动态申请权限问题【转】
Android 动态申请权限问题 感谢大佬:https://www.jianshu.com/p/2324a2bdb3d4 感谢大佬:https://blog.csdn.net/weixin_42910 ...