今天准备再更新一篇博客,加油呀~~~

系列博客链接:

(一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html

(二)目标检测算法之R-CNN https://www.cnblogs.com/kongweisi/p/10895055.html

本篇博客概述:

1、SPPNet的特点

  1.1、映射(减少卷积计算、防止图片内容变形

     1.2、spp层:空间金字塔层(将大小不同的图片转换成固定大小的图片) 

2、SPPNet总结

  完整结构+优缺点总结

引言:

前面介绍的R-CNN的速度慢在哪里?

答:每个候选区都要进行卷积操作提取特征。因此,SPPnet孕育而生。

1、 SPPNet

SPPNet提出了SPP层,主要改进了以下两个方面:

  • 减少卷积计算
  • 防止图片内容变形

                    图1 R-CNN与SPPNet

图1中第一行代表R-CNN的检测过程,第二行是SPPNet的。输入进R-CNN卷积层的图像必须固定大小,因此要进过crop/warp,这会使原图片变形。

而SPPNet直接将原图片输入CNN中,获其特征,使得原图片内容得以保真。

R-CNN模型 SPPNet模型
1、R-CNN是让每个候选区域经过crop/wrap等操作变换成固定大小的图像 2、固定大小的图像塞给CNN 传给后面的层做训练回归分类操作 1、SPPNet把全图塞给CNN得到全图的feature map 2、让候选区域与feature map直接映射,得到候选区域的映射特征向量 3、映射过来的特征向量大小不固定,这些特征向量塞给SPP层(空间金字塔变换层),SPP层接收任何大小的输入,输出固定大小的特征向量,再塞给FC层

1.1 映射

原始图片经过CNN变成了feature map,原始图片通过选择性搜索(SS)得到了候选区域,现在需要将基于原始图片的候选区域映射到feature map中的特征向量。

映射过程图参考如下:

整个映射过程有具体的公式,如下

假设(x′,y′)(x′,y′)表示特征图上的坐标点,坐标点(x,y)表示原输入图片上的点,那么它们之间有如下转换关系,这种映射关系与网络结构有关:(x,y)=(S∗x′,S∗y′),即

  • 左上角的点:

    • x′=[x/S]+1
  • 右下角的点:

    • x′=[x/S]−1

其中 SS 就是CNN中所有的strides的乘积,包含了池化、卷积的stride。论文中使用S的计算出来为=16

原论文链接,其中有公式的推导过程 http://kaiminghe.com/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf

1.2 spatial pyramid pooling (空间金字塔变换层

通过spatial pyramid pooling 将任意大小的特征图转换成固定大小的特征向量

示例:假设原图输入是224x224,对于conv出来后的输出是13x13x256的,可以理解成有256个这样的Filter,每个Filter对应一张13x13的feature map。

接着在这个特征图中找到每一个候选区域映射的区域,spp层会将每一个候选区域分成1x1,2x2,4x4三张子图,对每个子图的每个区域作max pooling,

得出的特征再连接到一起,就是(16+4+1)x256的特征向量,接着给全连接层做进一步处理,如下图:

2、 SPPNet总结

来看下SPPNet的完整结构

  • 优点

    • SPPNet在R-CNN的基础上提出了改进,通过候选区域和feature map的映射,配合SPP层的使用,从而达到了CNN层的共享计算,减少了运算时间, 后面的Fast R-CNN等也是受SPPNet的启发
  • 缺点
    • 训练依然过慢、效率低,特征需要写入磁盘(因为SVM的存在)
    • 分阶段训练网络:选取候选区域、训练CNN、训练SVM、训练bbox回归器, SPP-Net在fine-tuning阶段无法使用反向传播微调SPP-Net前面的Conv层

(三)目标检测算法之SPPNet的更多相关文章

  1. 目标检测算法(2)SPP-net

    本文是使用深度学习进行目标检测系列的第二篇,主要介绍SPP-net:Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual R ...

  2. (六)目标检测算法之YOLO

    系列文章链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  3. (五)目标检测算法之Faster R-CNN

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  4. (四)目标检测算法之Fast R-CNN

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  5. (七)目标检测算法之SSD

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnbl ...

  6. 深度学习笔记之目标检测算法系列(包括RCNN、Fast RCNN、Faster RCNN和SSD)

    不多说,直接上干货! 本文一系列目标检测算法:RCNN, Fast RCNN, Faster RCNN代表当下目标检测的前沿水平,在github都给出了基于Caffe的源码. •   RCNN RCN ...

  7. 目标检测算法的总结(R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD、FNP、ALEXnet、RetianNet、VGG Net-16)

    目标检测解决的是计算机视觉任务的基本问题:即What objects are where?图像中有什么目标,在哪里?这意味着,我们不仅要用算法判断图片中是不是要检测的目标, 还要在图片中标记出它的位置 ...

  8. 基于模糊Choquet积分的目标检测算法

    本文根据论文:Fuzzy Integral for Moving Object Detection-FUZZ-IEEE_2008的内容及自己的理解而成,如果想了解更多细节,请参考原文.在背景建模中,我 ...

  9. 目标检测算法YOLO算法介绍

    YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是, ...

随机推荐

  1. web.xml 配置文件?

    <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi="http:// ...

  2. glibc-2.18升级

    1.下载文件下载地址:https://mirrors.tuna.tsinghua.edu.cn/gnu/glibc/glibc-2.18.tar.gz 2.安装部署解压tar -zxvf glibc- ...

  3. Android Adapter基本理解

    感谢大佬:https://blog.csdn.net/l799069596/article/details/47301711 Android Adapter基本理解: 我的理解是: 1.一个有许多ge ...

  4. ARC下的内存管理

    1.ARC下单对象内存管理 局部变量释放对象随之被释放 int main(int argc, const char * argv[]) { @autoreleasepool { Person *p = ...

  5. ◆JAVA加密解密-3DES

    从数据安全谈起       当你使用网银时,是否担心你的银行卡会被盗用?     当你和朋友用QQ进行聊天时,是否担心你的隐私会被泄露?     作为开发者,编写安全的代码比编写优雅的代码更重要,因为 ...

  6. 【CF1194F】Crossword Expert(数学 期望)

    题目链接 大意 给你\(N\)个事件,解决每个事件所需的时间有\(1/2\)的概率为\(t[i]\),\(1/2\)的概率为\((t[i]+1)\),给你总时间\(T\),在\(T\)时间内按顺序解决 ...

  7. alpakka-kafka(10)-用kafka实现分布式近实时交易

    随着网上购物消费模式热度的不断提高,网上销售平台上各种促销手段也层出不穷,其中"秒购"已经是各种网站普遍流行的促销方式了."秒购"对数据的实效性和精确性要求非常 ...

  8. soc AXI接口术语和特性

    AXI接口术语和特性 1.outstanding 2.interleaving 3.out-of-oder 4.写数据可以优先于写地址 5.大小端 小端:低地址数据放在总线bus的低位. 大端:低地址 ...

  9. 一位资深IT技术员的心声

    引言 我对于本科时光的印象,还停留在那所普通 211 大学的建筑物之间,我坐在大学的时光长廊里,满眼望去,都是经历的过的故事.可毕业后回首,却很少有人能说,自己从来没有迷茫过.迷茫,仿佛就是一团乌云, ...

  10. 018 磁盘 IO 性能监控/压测工具(sar、iotop、fio、iostat)

    1 sar 命令查看当前磁盘 IO 读写 sar(System Activity Reporter 系统活动情况报告)是 Linux 上最为全面的系统性能分析工具之一,可以从多方面对系统的活动进行报告 ...