CVPR 2020几篇论文内容点评:目标检测跟踪,人脸表情识别,姿态估计,实例分割等

CVPR 2020中选论文放榜后,最新开源项目合集也来了。

本届CPVR共接收6656篇论文,中选1470篇,“中标率”只有22%,堪称十年来最难的一届

目标检测

论文题目:

Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection

本文首先指出了基于锚点检测与无锚点检测的本质区别,在于如何定义正、负训练样本,从而导致两者之间的性能差距。

研究人员提出了一种自适应训练样本选择 (ATSS),根据对象的统计特征自动选择正样本和负样本。它显著地提高了基于锚点和无锚点探测器的性能,并弥补了两者之间的差距。

最后,还讨论了在图像上每个位置平铺多个锚点来检测目标的必要性。

论文地址:

https://arxiv.org/abs/1912.02424

代码:

https://github.com/sfzhang15/ATSS

目标跟踪

论文题目:

MAST: A Memory-Augmented Self-supervised
Tracker

这篇论文提出了一种密集的视频跟踪模型 (无任何注释),在现有的基准上大大超过了之前的自监督方法(+15%),并实现了与监督方法相当的性能。

首先通过深入的实验,重新评估用于自监督训练和重建损失的传统选择。其次,通过使用一个重要的内存组件来扩展架构,从而进一步改进现有的方法。而后,对大规模半监督视频对象分割进行了基准测试,提出了一种新的度量方法:可泛化 (generalizability)。

论文地址:

https://arxiv.org/abs/2002.07793

代码:

https://github.com/zlai0/MAST

实例分割

论文题目:

PolarMask: Single Shot Instance Segmentation with Polar
Representation

本文提出了PolarMask方法,是一种single shot的实例分割框架。PolarMask基于FCOS,把实例分割统一到了FCN的框架下。

FCOS本质上是一种FCN的dense prediction的检测框架,可以在性能上不输anchor based的目标检测方法。

贡献在于,把更复杂的实例分割问题,转化成在网络设计和计算量复杂度上和物体检测一样复杂的任务,把对实例分割的建模变得简单和高效。

论文地址:

https://arxiv.org/abs/1909.13226

代码:

https://github.com/xieenze/PolarMask

NAS

论文题目:

CARS: Continuous Evolution for Efficient Neural
Architecture Search

在本文中,研究人员开发了一种高效的连续演化方法来搜索神经网络。

在最近的迭代中,在一个超网中共享参数的种群中的架构,将在具有几个epoch的训练数据集上进行调优。下一个演化迭代中的搜索将直接继承超网和种群,加速了最优网络的生成。进一步采用非支配排序策略,仅保留Pareto前沿的结果,以精确更新超网。

经过0.4天的GPU连续搜索,可以生成多个模型大小和性能不同的神经网络。这些网络超过了基准ImageNet数据集上最先进方法产生的网络。

论文地址:

https://arxiv.org/abs/1909.04977

代码(即将开源):

https://github.com/huawei-noah/CARS

人体姿态估计

2D人体姿态估计

论文题目:

The Devil is in the Details: Delving into Unbiased Data
Processing for Human Pose Estimation

所有计算机视觉的任务都需要和数据处理打交道,但在关键点检测问题上,数据处理显得尤为重要。在关键点检测任务上,数据处理尚未被系统的学习,因此这篇文章关注了人体关键点检测问题的数据处理,认为它是算法的一个极其重要的组成部分。

在系统地分析这个问题的时候,发现现有的所有的state-of-the-art在这个环节上都会存在两个方面的问题:一个是在测试过程中,如果使用flip ensemble时,由翻转图像得到的结果和原图得到的结果并不对齐。另外一个是使用的编码解码(encoding-decoding)方法存在较大的统计误差。

这两个问题耦合在一起,产生的影响包括:估计的结果不准确、复现指标困难、有较大可能使得实验的结果结论不可靠。

论文地址:

https://arxiv.org/abs/1911.07524

代码:

https://github.com/HuangJunJie2017/UDP-Pose

人脸表情识别

论文题目:

Suppressing Uncertainties for Large-Scale Facial Expression
Recognition

本文提出了一种简单而有效的自修复网络(SCN),它能有效地抑制不确定性,防止深度网络对不确定的人脸图像进行过拟合。

具体来说,SCN从两个不同的方面抑制了不确定性:⑴在小批量上的自关注机制,通过排名规则化对每个训练样本进行加权;⑵重新贴标签机制,在排名最低的组中修改这些样本的标签。

论文地址:

https://arxiv.org/abs/2002.10392

代码(即将开源):

https://github.com/kaiwang960112/Self-Cure-Network

3D人体姿态估计

论文题目:

VIBE: Video Inference for Human Body Pose and Shape
Estimation

由于缺乏用于训练的ground-truth三维运动数据,现有的基于视频的最先进的方法无法生成准确和自然的运动序列。

为了解决这个问题,本文提出了身体姿态和形状估计的视频推理(VIBE),它利用了现有的大型动作捕捉数据集(AMASS)和未配对的、in-the-wild 2D关键点注释。

关键创新是一个对抗性学习框架,它利用AMASS来区分真实的人类动作和由时间姿态、形状回归网络产生的动作。

论文地址:

https://arxiv.org/abs/1912.05656

代码:

https://github.com/mkocabas/VIBE

CVPR 2020几篇论文内容点评:目标检测跟踪,人脸表情识别,姿态估计,实例分割等的更多相关文章

  1. CVPR 2020 三篇有趣的论文解读

    作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 视频预测.时空序列预测 目录 AdderNet - 其实不需要这么多乘法 Deep Snake for Real-Time Insta ...

  2. 论文笔记:目标检测算法(R-CNN,Fast R-CNN,Faster R-CNN,FPN,YOLOv1-v3)

    R-CNN(Region-based CNN) motivation:之前的视觉任务大多数考虑使用SIFT和HOG特征,而近年来CNN和ImageNet的出现使得图像分类问题取得重大突破,那么这方面的 ...

  3. 带你读AI论文丨用于目标检测的高斯检测框与ProbIoU

    摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection&g ...

  4. TF项目实战(基于SSD目标检测)——人脸检测1

    SSD实战——人脸检测 Tensorflow 一 .人脸检测的困难: 1. 姿态问题 2.不同种族人, 3.光照 遮挡 带眼睛 4.视角不同 5. 不同尺度 二. 数据集介绍以及转化VOC: 1. F ...

  5. 【论文解读】[目标检测]retinanet

    作为单阶段网络,retinanet兼具速度和精度(精度是没问题,速度我持疑问),是非常耐用的一个检测器,现在很多单阶段检测器也是以retinanet为baseline,进行各种改进,足见retinan ...

  6. How to Read a Paper丨如何阅读一篇论文

    这是我在看论文时无意刷到的博客推荐的一篇文章"How to Read a Paper",教你怎么样看论文.对于研究生来说,看论文基本是日常,一篇论文十多二十页,如何高效地读论文确实 ...

  7. 目标检测算法(1)目标检测中的问题描述和R-CNN算法

    目标检测(object detection)是计算机视觉中非常具有挑战性的一项工作,一方面它是其他很多后续视觉任务的基础,另一方面目标检测不仅需要预测区域,还要进行分类,因此问题更加复杂.最近的5年使 ...

  8. 【目标检测+域适应】CVPR18 CVPR19总结

    域适应已经是一个很火的方向了,目标检测更不用说,二者结合的工作也开始出现了,这里我总结了CVPR18和CVPR19的相关论文,希望对这个交叉方向的近况有一个了解. 1. 2018_CVPR Domai ...

  9. 目标检测-基于Pytorch实现Yolov3(1)- 搭建模型

    原文地址:https://www.cnblogs.com/jacklu/p/9853599.html 本人前段时间在T厂做了目标检测的项目,对一些目标检测框架也有了一定理解.其中Yolov3速度非常快 ...

随机推荐

  1. UVA10047独轮车

    题意:      给你一个独轮车,轮子上有五个扇形,每过一个格子就转过一个扇形,刚开始的时候方向是向北的,绿色上行向下,每一次可以有三种操作,到下一个格子,左转90度,右转90度,每一次操作都花费时间 ...

  2. hdu4975 行列和构造矩阵(dp判断唯一性)

    题意:       和hdu4888一样,只不过是数据加强了,就是给你行列的和,让你构造一个矩阵,然后判断矩阵是否唯一. 思路:       构造矩阵很简单,跑一次最大流就行了,关键是判断矩阵的唯一性 ...

  3. PKI/CA与证书服务

    目录 PKI CA RA LDAP目录服务 CRL证书作废系统 数字证书 证书验证 证书撤销 证书更新 PKI系统的构成 PKI PKI(Public Key Infrastructure)公钥基础设 ...

  4. DLL内存加载

    动态加载dll 功能:      把一个处于内存里的dll直接加载并且使用. 用途:      免杀(静态文件查杀),外挂(防止游戏自己hook了loadlibrary等函数),以及其他. 原理:  ...

  5. anaconda安装教程

    Anaconda是一个方便的python包管理和环境管理软件,一般用来配置不同的项目环境.我们常常会遇到这样的情况,正在做的项目A和项目B分别基于python2和python3,而第电脑只能安装一个环 ...

  6. thymeleaf中[[${}]]与[(${})]的区别

    [[-]]会被转义,[(-)]不会. 假设在后台传入msg的值为 <b>AAA</b> 在前台这样使用 [[${msg}]]___[(${msg})] 展示效果 官方参考文档

  7. 【转】python SQLAlchemy

    数据库表是一个二维表,包含多行多列. 把一个表的内容用Python的数据结构表示出来的话,可以用一个list表示多行,list的每一个元素是tuple,表示一行记录,比如,包含id和name的user ...

  8. python通过字符串定义函数名

    记录python里的一个有意思的小技巧:通过字符串定义函数名称. import sys m=sys.modules[__name__] def temp(x): return x+1 setattr( ...

  9. IO异步,读写压缩文件,监控文件系统

    这节结尾IO,讲一下异步操作文件,读写压缩文件,监控文件系统这三个知识点. 异步操作文件:     说到异步,必然要了解的是async和await这两个关键字(异步详情点击基于任务的异步编程(Task ...

  10. Nmap浅析(2)——端口发现

    端口发现 ​ 每台网络设备最多有216(65536)个端口,端口的作用是实现"一机多用".操作系统分了65536个端口号,程序在发送的信息中加入端口号,操作系统在接收到信息后按照端 ...