CVPR 2020几篇论文内容点评:目标检测跟踪,人脸表情识别,姿态估计,实例分割等
CVPR 2020几篇论文内容点评:目标检测跟踪,人脸表情识别,姿态估计,实例分割等
CVPR 2020中选论文放榜后,最新开源项目合集也来了。
本届CPVR共接收6656篇论文,中选1470篇,“中标率”只有22%,堪称十年来最难的一届。
目标检测
论文题目:
Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection
本文首先指出了基于锚点检测与无锚点检测的本质区别,在于如何定义正、负训练样本,从而导致两者之间的性能差距。
研究人员提出了一种自适应训练样本选择 (ATSS),根据对象的统计特征自动选择正样本和负样本。它显著地提高了基于锚点和无锚点探测器的性能,并弥补了两者之间的差距。
最后,还讨论了在图像上每个位置平铺多个锚点来检测目标的必要性。
论文地址:
https://arxiv.org/abs/1912.02424
代码:
https://github.com/sfzhang15/ATSS
目标跟踪
论文题目:
MAST: A Memory-Augmented Self-supervised
Tracker
这篇论文提出了一种密集的视频跟踪模型 (无任何注释),在现有的基准上大大超过了之前的自监督方法(+15%),并实现了与监督方法相当的性能。
首先通过深入的实验,重新评估用于自监督训练和重建损失的传统选择。其次,通过使用一个重要的内存组件来扩展架构,从而进一步改进现有的方法。而后,对大规模半监督视频对象分割进行了基准测试,提出了一种新的度量方法:可泛化 (generalizability)。
论文地址:
https://arxiv.org/abs/2002.07793
代码:
https://github.com/zlai0/MAST
实例分割
论文题目:
PolarMask: Single Shot Instance Segmentation with Polar
Representation
本文提出了PolarMask方法,是一种single shot的实例分割框架。PolarMask基于FCOS,把实例分割统一到了FCN的框架下。
FCOS本质上是一种FCN的dense prediction的检测框架,可以在性能上不输anchor based的目标检测方法。
贡献在于,把更复杂的实例分割问题,转化成在网络设计和计算量复杂度上和物体检测一样复杂的任务,把对实例分割的建模变得简单和高效。
论文地址:
https://arxiv.org/abs/1909.13226
代码:
https://github.com/xieenze/PolarMask
NAS
论文题目:
CARS: Continuous Evolution for Efficient Neural
Architecture Search
在本文中,研究人员开发了一种高效的连续演化方法来搜索神经网络。
在最近的迭代中,在一个超网中共享参数的种群中的架构,将在具有几个epoch的训练数据集上进行调优。下一个演化迭代中的搜索将直接继承超网和种群,加速了最优网络的生成。进一步采用非支配排序策略,仅保留Pareto前沿的结果,以精确更新超网。
经过0.4天的GPU连续搜索,可以生成多个模型大小和性能不同的神经网络。这些网络超过了基准ImageNet数据集上最先进方法产生的网络。
论文地址:
https://arxiv.org/abs/1909.04977
代码(即将开源):
https://github.com/huawei-noah/CARS
人体姿态估计
2D人体姿态估计
论文题目:
The Devil is in the Details: Delving into Unbiased Data
Processing for Human Pose Estimation
所有计算机视觉的任务都需要和数据处理打交道,但在关键点检测问题上,数据处理显得尤为重要。在关键点检测任务上,数据处理尚未被系统的学习,因此这篇文章关注了人体关键点检测问题的数据处理,认为它是算法的一个极其重要的组成部分。
在系统地分析这个问题的时候,发现现有的所有的state-of-the-art在这个环节上都会存在两个方面的问题:一个是在测试过程中,如果使用flip ensemble时,由翻转图像得到的结果和原图得到的结果并不对齐。另外一个是使用的编码解码(encoding-decoding)方法存在较大的统计误差。
这两个问题耦合在一起,产生的影响包括:估计的结果不准确、复现指标困难、有较大可能使得实验的结果结论不可靠。
论文地址:
https://arxiv.org/abs/1911.07524
代码:
https://github.com/HuangJunJie2017/UDP-Pose
人脸表情识别
论文题目:
Suppressing Uncertainties for Large-Scale Facial Expression
Recognition
本文提出了一种简单而有效的自修复网络(SCN),它能有效地抑制不确定性,防止深度网络对不确定的人脸图像进行过拟合。
具体来说,SCN从两个不同的方面抑制了不确定性:⑴在小批量上的自关注机制,通过排名规则化对每个训练样本进行加权;⑵重新贴标签机制,在排名最低的组中修改这些样本的标签。
论文地址:
https://arxiv.org/abs/2002.10392
代码(即将开源):
https://github.com/kaiwang960112/Self-Cure-Network
3D人体姿态估计
论文题目:
VIBE: Video Inference for Human Body Pose and Shape
Estimation
由于缺乏用于训练的ground-truth三维运动数据,现有的基于视频的最先进的方法无法生成准确和自然的运动序列。
为了解决这个问题,本文提出了身体姿态和形状估计的视频推理(VIBE),它利用了现有的大型动作捕捉数据集(AMASS)和未配对的、in-the-wild 2D关键点注释。
关键创新是一个对抗性学习框架,它利用AMASS来区分真实的人类动作和由时间姿态、形状回归网络产生的动作。
论文地址:
https://arxiv.org/abs/1912.05656
代码:
https://github.com/mkocabas/VIBE
CVPR 2020几篇论文内容点评:目标检测跟踪,人脸表情识别,姿态估计,实例分割等的更多相关文章
- CVPR 2020 三篇有趣的论文解读
作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 视频预测.时空序列预测 目录 AdderNet - 其实不需要这么多乘法 Deep Snake for Real-Time Insta ...
- 论文笔记:目标检测算法(R-CNN,Fast R-CNN,Faster R-CNN,FPN,YOLOv1-v3)
R-CNN(Region-based CNN) motivation:之前的视觉任务大多数考虑使用SIFT和HOG特征,而近年来CNN和ImageNet的出现使得图像分类问题取得重大突破,那么这方面的 ...
- 带你读AI论文丨用于目标检测的高斯检测框与ProbIoU
摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection&g ...
- TF项目实战(基于SSD目标检测)——人脸检测1
SSD实战——人脸检测 Tensorflow 一 .人脸检测的困难: 1. 姿态问题 2.不同种族人, 3.光照 遮挡 带眼睛 4.视角不同 5. 不同尺度 二. 数据集介绍以及转化VOC: 1. F ...
- 【论文解读】[目标检测]retinanet
作为单阶段网络,retinanet兼具速度和精度(精度是没问题,速度我持疑问),是非常耐用的一个检测器,现在很多单阶段检测器也是以retinanet为baseline,进行各种改进,足见retinan ...
- How to Read a Paper丨如何阅读一篇论文
这是我在看论文时无意刷到的博客推荐的一篇文章"How to Read a Paper",教你怎么样看论文.对于研究生来说,看论文基本是日常,一篇论文十多二十页,如何高效地读论文确实 ...
- 目标检测算法(1)目标检测中的问题描述和R-CNN算法
目标检测(object detection)是计算机视觉中非常具有挑战性的一项工作,一方面它是其他很多后续视觉任务的基础,另一方面目标检测不仅需要预测区域,还要进行分类,因此问题更加复杂.最近的5年使 ...
- 【目标检测+域适应】CVPR18 CVPR19总结
域适应已经是一个很火的方向了,目标检测更不用说,二者结合的工作也开始出现了,这里我总结了CVPR18和CVPR19的相关论文,希望对这个交叉方向的近况有一个了解. 1. 2018_CVPR Domai ...
- 目标检测-基于Pytorch实现Yolov3(1)- 搭建模型
原文地址:https://www.cnblogs.com/jacklu/p/9853599.html 本人前段时间在T厂做了目标检测的项目,对一些目标检测框架也有了一定理解.其中Yolov3速度非常快 ...
随机推荐
- 动态地绑定到它的 is 特性,可以实现动态组件
前面的话 让多个组件使用同一个挂载点,并动态切换,这就是动态组件.本文将详细介绍Vue动态组件 概述 通过使用保留的 <component> 元素,动态地绑定到它的 is 特性,可以实现动 ...
- 【yml】springboot 配置类 yml语法
参考:https://www.runoob.com/w3cnote/yaml-intro.html YAML 是 "YAML Ain't a Markup Language"(YA ...
- hdu2438 三分
题意: 给你个90度的转弯,和一辆标准矩形的车,问你这台车能不能拐过去.. 思路: 求出靠近最里侧的那条边所在的直线(这个图形右下角为坐标原点) y = x * ta ...
- Xposed学习一:初探
学习Xposed框架,在github:https://github.com/rovo89 下载XposedInstaller安装到手机上来管理Xposed的模块. 本文记录根据官方文档(资料1)在an ...
- 逆向 stdio.h 函数库 fseek 函数(调试版本)
0x01 fseek 函数 函数原型:int fseek(FILE *stream, long int offset, int whence) 函数功能:设置流 stream 的文件位置为给定的偏移 ...
- Linux-鸟菜-6-文件与目录管理
Linux-鸟菜-6-文件与目录管理 这章主要是说一些对目录和文件的增删改查等等命令. . 代表当前目录 .. 代表前一个目录 / 的 . 和 .. 一样 - 代表前一个工作目录 ...
- Android拆分与加载Dex的多种方案对比
http://mp.weixin.qq.com/s?__biz=MzAwNDY1ODY2OQ==&mid=207151651&idx=1&sn=9eab282711f4eb2b ...
- SqlServer数据库主从同步
分发/订阅模式实现SqlServer主从同步 在文章开始之前,我们先了解一下几个关键的概念: 分发服务器分发服务器是负责存储在同步过程中所用复制信息的服务器.可以比喻成报刊发行商. 分发数据库分发数据 ...
- 【maven】maven创建项目问题
这个问题困扰了很多,几个月在做大数据课设的时候,本想创建maven项目,但是创建项目失败了.这次又碰到maven创建项目失败,终于解决了.下面按碰到问题的时间来描述,所以需要从头认真看 前提须知 Ma ...
- Pytorch_Part2_数据模块
VisualPytorch beta发布了! 功能概述:通过可视化拖拽网络层方式搭建模型,可选择不同数据集.损失函数.优化器生成可运行pytorch代码 扩展功能:1. 模型搭建支持模块的嵌套:2. ...