AcWing 220. 最大公约数
给定整数N,求1<=x,y<=N且GCD(x,y)为素数的数对(x,y)有多少对。
GCD(x,y)即求x,y的最大公约数。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e7 + 233;
int primes[maxn], mu[maxn], sum[maxn], cnt;
bool st[maxn];
void get_primes(int n)
{
mu[1] = 1; sum[1] = 1;
for(int i = 2; i <= n; i++)
{
if(!st[i]) primes[cnt++] = i, mu[i] = -1;
sum[i] = sum[i - 1] + mu[i];
for(int j = 0; j < cnt && i * primes[j] <= n; j++)
{
st[primes[j] * i] = 1;
if(i % primes[j] == 0)
{
mu[primes[j]*i]=0;
break;
}
else mu[primes[j]*i]=-mu[i];
}
}
}
int main()
{
get_primes(10000000);
int n;cin>>n;
ll ans=0;
for(int j=0;j<cnt&&primes[j]<=n;j++)
{
int a=n/primes[j],c=0;
for(int i=1;i<=a;i=c+1)
{
c=n/(n/i);
ll b=i*primes[j];
ll t=(n/b)*(n/b);
ans+=(ll)(sum[c]-sum[i-1])*t;
}
}
cout<<ans;
}
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e7 + 233;
int primes[maxn], mu[maxn], sum[maxn], cnt;
bool st[maxn];
void get_primes(int n)
{
mu[1] = 1; sum[1] = 1;
for(int i = 2; i <= n; i++)
{
if(!st[i]) primes[cnt++] = i, mu[i] = -1;
sum[i] = sum[i - 1] + mu[i];
for(int j = 0; j < cnt && i * primes[j] <= n; j++)
{
st[primes[j] * i] = 1;
if(i % primes[j] == 0)
{
mu[primes[j]*i]=0;
break;
}
else mu[primes[j]*i]=-mu[i];
}
}
}
int main()
{
get_primes(10000000);
int n;cin>>n;
ll ans=0;
for(int j=0;j<cnt&&primes[j]<=n;j++)
{
int a=n/primes[j],c=0;
for(int i=1;i<=a;i=c+1)
{
c=n/(n/i);
ll b=i*primes[j];
ll t=(n/b)*(n/b);
ans+=(ll)(sum[c]-sum[i-1])*t;
}
}
cout<<ans;
}
AcWing 220. 最大公约数的更多相关文章
- AcWing 220.最大公约数 欧拉函数打卡
题目:https://www.acwing.com/problem/content/222/ 题意:求1-n范围内,gcd(x,y)是素数的对数 思路:首先我们可以针对每个素数p,那么他的贡献应该时 ...
- AcWing 220. 最大公约数 | 欧拉函数
传送门 题目描述 给定整数N,求1<=x,y<=N且GCD(x,y)为素数的数对(x,y)有多少对. GCD(x,y)即求x,y的最大公约数. 输入格式 输入一个整数N 输出格式 输出一个 ...
- AcWing 872. 最大公约数
#include <iostream> #include <algorithm> using namespace std; //辗转相除法 //a和b的最大公约数 = b和(a ...
- acwing练习
220. 最大公约数 给定整数N,求1<=x,y<=N且GCD(x,y)为素数的数对(x,y)有多少对. GCD(x,y)即求x,y的最大公约数. 输入格式 输入一个整数N 输出格式 输出 ...
- AcWing 246. 区间最大公约数
246. 区间最大公约数 思路: 首先根据更相减损术,我们得到一个结论: \(gcd(a_l, a_{l+1}, ...,a_r) = gcd(a_l, a_{l+1}-a_l, a_{l+2}-a_ ...
- AcWing:246. 区间最大公约数(线段树 + 增量数组(树状数组) + 差分序列)
给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一: 1.“C l r d”,表示把 A[l],A[l+1],…,A[r] 都加上 d. 2.“Q l r”,表示询问 A[l],A[l ...
- C语言辗转相除法求2个数的最小公约数
辗转相除法最大的用途就是用来求两个数的最大公约数. 用(a,b)来表示a和b的最大公约数. 有定理: 已知a,b,c为正整数,若a除以b余c,则(a,b)=(b,c). (证明过程请参考其它资料) 例 ...
- Android Weekly Notes Issue #220
Android Weekly Issue #220 August 28th, 2016 Android Weekly Issue #220 ARTICLES & TUTORIALS Manag ...
- PIC10F200/202/204/206/220/222/320/322芯片解密程序复制多少钱?
PIC10F200/202/204/206/220/222/320/322芯片解密程序复制多少钱? PIC10F单片机芯片解密型号: PIC10F200解密 | PIC10F202解密 | PIC10 ...
随机推荐
- 065.Python框架Django-DRF
一 WEB应用模式 在开发Web应用中,有两种应用模式: 1.1 前后端不分离 1.2 前后端分离 二 API接口 为了在团队内部形成共识.防止个人习惯差异引起的混乱,我们需要找到一种大家都觉得很 ...
- 云计算OpenStack---虚拟机获取不到ip(12)
一.现象描述 openstack平台中创建虚拟机后,虚拟机在web页面中显示获取到了ip,但是打开虚拟机控制台后查看网络状态,虚拟机没有ip地址,下图为故障截图: 二.分析 1.查看neutron服务 ...
- 1.2Linux 主要目录速查表
Linux 主要目录速查表 /:根目录,一般根目录下只存放目录,在 linux 下有且只有一个根目录,所有的东西都是从这里开始 当在终端里输入 /home,其实是在告诉电脑,先从 /(根目录)开始,再 ...
- getaddrinfo()函数详解-(转自 cxz2009)
1. 概述IPv4中使用gethostbyname()函数完成主机名到地址解析,这个函数仅仅支持IPv4,且不允许调用者指定所需地址类型的任何信息,返回的结构只包含了用于存储IPv4地址的空间.IPv ...
- 火币HBAI量化币圈唯一免费量化炒币机器人
量化交易是一种投资方法.以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种"大概率"事件以制定策略,极大地减少了投资者情绪波动的影响,避免 ...
- ubuntu 14.04安装mysql-python
网上看到的是想安装mysql-python都得安装mysql本身,可是我就不想安装这个数据库,而是用于连接到别的服务器上的mysql,所以下面就是安装过程: 1. 直接运行: pip install ...
- JS实现前台表格排序功能
JS实现前台表格排序功能 虽然数据量不大的情况下,前台排序速度比较快,但一般情况下,我们的项目只使用后台排序,原因有二: 一是代码简单:二是前台JS排序对于有分页的情况无法处理. 前段时间,有个功能需 ...
- python字典转bytes类型字典
python字典转bytes类型字典import base64 import json 1. a={"Vod":{"userData":"{}&quo ...
- ELK搭建-windows
一.E 二.L 启动 三.K 四.filebeat 五.配置文件使用 1.logstash-sample.conf # Sample Logstash configuration for creati ...
- 如何保证Qt状态机的最佳性能
如何保证Qt状态机的最佳性能 How to ensure the best Qt state machine performance 如果您使用Qt进行应用程序开发,并且使用状态机,那么很可能您正在使 ...