题解 \(by\;zj\varphi\)

二分答案,考虑二分背包中的最大值是多少。

枚举 \(p\) 的值,在当前最优答案不优时,直接跳掉。

随机化一下 \(p\),这样复杂度会有保证。

Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x=f?x:-x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
static const int N=1e4+7;
int a[N],tmp[N],p[N],ans,n,P,k;
inline int check(int mid) {
ri cnt(0),nw(0);
for (ri i(1);i<=n;p(i)) {
if (tmp[i]>mid) return 0;
if (nw+tmp[i]>mid) p(cnt),nw=0;
nw+=tmp[i];
}
return cnt<k;
}
inline int MD(int x) {return x>=P?x-P:x;}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
srand(time(0)*clock()^time(0)*clock());
cin >> n >> P >> k;
for (ri i(1);i<=n;p(i)) cin >> a[i];
for (ri i(1);i<=P;p(i)) p[i]=i-1;
std::random_shuffle(p+1,p+P+1);
ans=10000*n;
for (ri i(1);i<=P;p(i)) {
ri cp=p[i];
for (ri j(1);j<=n;p(j)) tmp[j]=MD(a[j]+cp);
if (!check(ans)) continue;
ri l(0),r(ans),res;
while(l<=r) {
int mid(l+r>>1);
if (check(mid)) r=mid-1,res=mid;
else l=mid+1;
}
ans=res;
}
printf("%d\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 $30\; \rm 毛三琛$的更多相关文章

  1. NOIP 模拟 $30\; \rm 毛二琛$

    题解 \(by\;zj\varphi\) 原题问的就是对于一个序列,其中有的数之间有大小关系限制,问有多少种方案. 设 \(dp_{i,j}\) 表示在前 \(i\) 个数中,第 \(i\) 个的排名 ...

  2. NOIP 模拟 $30\; \rm 毛一琛$

    题解 \(by\;zj\varphi\) 如何判断一个集合可以被拆成两个相等的部分? 枚举两个集合,如果它们的和相等,那么他们的并集就是合法的,复杂度 \(\mathcal O\rm(3^n)\) \ ...

  3. noip模拟30[毛毛毛探探探]

    \(noip模拟30\;solutions\) 所以说,这次被初中的大神给爆了????? 其实真的不甘心,这次考场上的遗憾太多,浪费的时间过多,心情非常不好 用这篇题解来结束这场让人伤心的考试吧 \( ...

  4. NOIP 2008提高组第三题题解by rLq

    啊啊啊啊啊啊今天已经星期三了吗 那么,来一波题解吧 本题地址http://www.luogu.org/problem/show?pid=1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们 ...

  5. 最优贸易 NOIP 2009 提高组 第三题

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  6. Noip模拟30 2021.8.4

    T1 毛一琛 考场上打的稳定的$O((2^n)^2)$的暴力.其实再回忆一下上次那道用二进制枚举的题$y$ 就可以知道一样的道理,使用$\textit{Meet In the Middle}$, 按照 ...

  7. 2021.8.4考试总结[NOIP模拟30]

    T1 毛衣衬 将合法子集分为两个和相等的集合. 暴力枚举每个元素是否被选,放在哪种集合,复杂度$O(3^n)$.考虑$\textit{meet in the middle}$. 将全集等分分为两部分分 ...

  8. 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)

    A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...

  9. noip模拟30

    \(\color{white}{\mathbb{缀以无尽之群星点点,饰以常青之巨木郁郁,可细斟木纹叶脉,独无可极苍穹之览,名之以:密林}}\) 看完题后感觉整套题都没什么思路,而且基本上整场考试确实是 ...

随机推荐

  1. WPF教程十:如何使用Style和Behavior在WPF中规范视觉样式

    在使用WPF编写客户端代码时,我们会在VM下解耦业务逻辑,而剩下与功能无关的内容比如动画.视觉效果,布局切换等等在数量和复杂性上都超过了业务代码.而如何更好的简化这些编码,WPF设计人员使用了Styl ...

  2. SESSION和JWT

    1.传统登录的方式是使用 session + token,比较适用于Web应用的会话管理.token 是指在客户端使用 token 作为用户状态凭证,浏览器一般存储在 localStorage 或者 ...

  3. 「CF505E」 Mr. Kitayuta vs. Bamboos

    「CF505E」 Mr. Kitayuta vs. Bamboos 传送门 如果没有每轮只能进行 \(k\) 次修改的限制或者没有竹子长度必须大于 \(0\) 的限制那么直接贪心就完事了. 但是很遗憾 ...

  4. 家庭账本开发day02

    今日完成 今天主要进行了前台界面的构架,利用layUI已有的模板编写新增账单界面 然后进行了后端的Bean和Servlet的初步编写,实现数据库的构建. 遇到问题 获取前端传输数据,并添加数据到数据库 ...

  5. 【LeetCode】151. 翻转字符串里的单词(剑指offer 58-I)

    151. 翻转字符串里的单词 知识点:字符串:双指针 题目描述 给你一个字符串 s ,逐个翻转字符串中的所有 单词 . 单词 是由非空格字符组成的字符串.s 中使用至少一个空格将字符串中的 单词 分隔 ...

  6. Maven BOM!拿来吧你

    what BOM? BOM(Bill of Materials)是由Maven提供的功能,它通过定义一整套相互兼容的jar包版本集合, 使用时只需要依赖该BOM文件,即可放心的使用需要的依赖jar包, ...

  7. git教程和命令集合

    详细教程可参考 git community book中文版 git教程(廖雪峰) 安装 官网下载git安装包,进行安装即可: 打开cmd终端,输入 "git --version", ...

  8. 微信小程序账号注册

    想要开发微信小程序,先注册账号申请APPID. 第一步:百度搜索"微信公众平台" 第二步:立即注册 进入注册页面 区别: 订阅号: 订阅号在文件夹里,订阅号消息 一天只能推送一次, ...

  9. SpringData JPA 使用原生 SQL

    在实现个人博客系统的归档功能的时候,遇上这样的需求: 先把数据库中所有条目的时间按照年月分组,并查询出年月(String)的列表 根据年月字符串查询符合条件的博客,并返回博客列表 由于数据访问层使用的 ...

  10. create-react-app 创建的项目执行npm run eject后,运行报错

    create-react-app 创建的项目执行npm run eject后,运行报错:Cannot find module '@babel/plugin-transform-react-jsx-so ...