T1

有个朴素的暴力,枚举每一个子矩形,复杂度 \(O(n^{2}m^{2})\),观察数据范围,n很小,考虑枚举行,对于 \(m\) 用 \(two\;pointers\) 来维护。

先预处理出每一列的前缀和,然后枚举行,对于列,用个双指针,把 \([l,r]\) 这一段区间卡出来,答案每回累加合法的区间长度即可。

复杂度 \(O(n^{2}m)\)

Code
#include<cmath>
#include<cstdio>
#define MAX 50100
#define re register
#define int long long
namespace OMA
{
char ch[MAX];
int n,m,l,r,tot[MAX];
int ans,sum[33][MAX];
struct stream
{
template<typename type>inline stream &operator >>(type &s)
{
int w=1; s=0; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*=w,*this;
}
}cin;
signed main()
{
//freopen("node.in","r",stdin);
cin >> n >> m;
for(re int i=1; i<=n; i++)
{
scanf("%s",ch+1);
for(re int j=1; j<=m; j++)
{ sum[i][j] = sum[i-1][j]+(ch[j]=='1'); }
}
cin >> l >> r;
for(re int i=1; i<=n; i++)
{
for(re int j=i; j<=n; j++)
{
int lp = 0,rp = 0;
for(re int k=1; k<=m; k++)
{
//printf("i=%lld j=%lld k=%lld ",i,j,k);
tot[k] = tot[k-1]+sum[j][k]-sum[i-1][k];
//printf("tot[%lld]=%lld\n",k,tot[k]);
while(tot[k]-tot[lp]>r&&lp+1<k)
{ lp++; }
while(tot[k]-tot[rp+1]>=l&&rp+1<k)
{ rp++; }
if(tot[k]-tot[rp]>=l)
{ ans += rp-lp+1; }
}
}
}
printf("%lld\n",ans);
return 0;
}
}
signed main()
{ return (OMA::main(),0); }

T2

题意转换

好了,现在你已经知道转换后的题意,问题在于如何求解 \(cnt\) 数组和答案。

对于每一行,我们都开一个桶记录 \(a\) 出现的次数。

然后枚举每一行,再从1枚举到最大值,再枚举当前枚举的数的倍数,加上上边说的桶即可 建议看code

这样得到的 \(cnt_{i,j}\) 表示第i行有多少个数为j的倍数,每一行求和就是总的,而我们要的是j,所以考虑一波容斥,即减去j的其他倍数即可,这样的话就要倒序枚举最大值。

复杂度 \(O(n(m+\max\{a\}\ln\max\{a\}))\) 。

Code
#include<cstdio>
#define MAX 100010
#define re register
#define int long long
const int N = 22;
namespace OMA
{
int n,m,xam,ans;
int a[N][MAX];
int buc[N][MAX];
int cnt[N][MAX],sum[MAX];
const int p = 1e9+7;
struct stream
{
template<typename type>inline stream &operator >> (type &s)
{
int w=1; s=0; char ch=getchar();
while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); }
while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); }
return s*=w,*this;
}
}cin;
inline int max(int a,int b)
{ return a>b?a:b; }
signed main()
{
cin >> n >> m;
for(re int i=1; i<=n; i++)
{
for(re int j=1; j<=m; j++)
{ cin >> a[i][j]; xam = max(xam,a[i][j]); buc[i][a[i][j]]++; }
}
for(re int i=1; i<=n; i++)
{
for(re int j=1; j<=xam; j++)
{
for(re int k=1; j*k<=xam; k++)
{ cnt[i][j] += buc[i][j*k]; }
}
}
/*for(re int i=1; i<=n; i++)
{
for(re int j=1; j<=xam; j++)
{ printf("%lld ",cnt[i][j]); }
printf("\n");
}*/
for(re int j=xam; j; j--)
{
sum[j] = 1;
for(re int i=1; i<=n; i++)
{ (sum[j] *= cnt[i][j]+1) %= p; }
sum[j] -= 1;
if(!sum[j])
{ continue ; }
for(re int k=2; k*j<=xam; k++)
{ sum[j] -= sum[k*j]; }
(ans += j*sum[j]) %= p;
}
printf("%lld\n",(ans+p)%p);
return 0;
}
}
signed main()
{ return OMA::main(); }

T3

点分治,不会,爬了

noip38的更多相关文章

随机推荐

  1. bugkuCTF

    这题说实话我一脸懵逼,计网还没学的我,瑟瑟发抖,赶紧去百度. 思路分析: 涉及到域名解析,也就是dns服务,看了看writeup,都是修改host文件,百度了下host文件的作用,才明白了 host文 ...

  2. java基础---集合(1)

    一. 基本概念 集合.数组都是对多个数据进行存储操作的结构,简称Java容器 数组:长度确定,类型确定,对于添加.删除.插入等操作效率不高,元素有序可重复 Java中集合框架顶层框架是:java.ut ...

  3. QT. 学习之路 一

    初识QT 一:   hello-world: #include "mainwindow.h" #include <QApplication> #include < ...

  4. 牛客OI测试赛1

    题目链接: https://www.nowcoder.com/acm/contest/181#question A.斐波拉契 求$f[n-1]*f[n+1]-f[n]^2$,$f[n]$为斐波拉契数列 ...

  5. CocoaPods 私有化

    一.创建所需要的代码仓库 创建 Spec 私有索引库(ZFSpec),用来存放本地spec 创建模块私有库(ZFPodProject),用来存放项目工程文件 二.私有索引库添加到本地 CocoaPod ...

  6. PyVista:一款Python的三维可视化软件

    技术背景 三维可视化是一项在工业领域中非常重要的技术,而Python中最热门的可视化工具matplotlib和plotly,更加倾向于在数据领域的可视化,用于展现数据的结果.类似的还有百度的pyech ...

  7. 【转载】Java学习笔记

    转载:博主主页 博主的其他笔记汇总 : 学习数据结构与算法,学习笔记会持续更新: <恋上数据结构与算法> 学习Java虚拟机,学习笔记会持续更新: <Java虚拟机> 学习Ja ...

  8. deepin修改数据源升级到deepin15.11桌面版

    参考:https://blog.csdn.net/baidu_41751590/article/details/89064220 1,我修改数据源地址: 换成上海交通大学源地址: http://ftp ...

  9. 怎么实现系统调用wait和exit

    例程 #include <unistd.h> #include <stdlib.h> #include <stdio.h> #include <sys/wai ...

  10. 每天五分钟Go - 闭包

    闭包的示例代码 func getSequence() func() int{ i:=0 return func() int { i+=1 return i } } 首先,函数名getSequence, ...