线性回归与梯度下降(ML作业)
Loss函数
题目一:完成computeCost.m
function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
J = (1 / (2 * m))* sum((X * theta - y).^ 2);
% =========================================================================
end
直接套用公式编写:
\]
Loss函数升级版:computeCostMulti.m
function J = computeCostMulti(X, y, theta)
%COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
% J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost.
J = (1 / (2 * m))* sum((X * theta - y).^ 2);
% =========================================================================
end
其实写法一模一样……
GD算法:gradientDescent.m
function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
temp = zeros(length(theta), 1);
for i = 1:length(theta)
temp(i, 1) = theta(i, 1) + alpha * (sum((y - X * theta) .* X(:, i))) / length(X);
end
theta = temp;
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta);
end
end
由于当时写题目的时候就直接按照矩阵的写法写,所以其实复杂版写法也是一样的
GD复杂版算法:gradientDescent.m
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCostMulti) and gradient here.
%
temp = zeros(length(theta), 1);
for i = 1:length(theta)
temp(i, 1) = theta(i, 1) + alpha * (sum((y - X * theta) .* X(:, i))) / length(X);
end
theta = temp;
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta);
end
end
特征缩放:featureNormalize.m
function [X_norm, mu, sigma] = featureNormalize(X)
%FEATURENORMALIZE Normalizes the features in X
% FEATURENORMALIZE(X) returns a normalized version of X where
% the mean value of each feature is 0 and the standard deviation
% is 1. This is often a good preprocessing step to do when
% working with learning algorithms.
% You need to set these values correctly
X_norm = X;
mu = zeros(1, size(X, 2));
sigma = zeros(1, size(X, 2));
% ====================== YOUR CODE HERE ======================
% Instructions: First, for each feature dimension, compute the mean
% of the feature and subtract it from the dataset,
% storing the mean value in mu. Next, compute the
% standard deviation of each feature and divide
% each feature by it's standard deviation, storing
% the standard deviation in sigma.
%
% Note that X is a matrix where each column is a
% feature and each row is an example. You need
% to perform the normalization separately for
% each feature.
%
% Hint: You might find the 'mean' and 'std' functions useful.
%
mu = mean(X);
sigma = std(X);
for i = 1:length(X)
X(i, :) = (X(i, :) - mu) ./ sigma;
end
X_norm = X;
% ============================================================
end
公式采用:
\mu:avg \\
\sigma:std
\]
公式法:normalEqn.m
function [theta] = normalEqn(X, y)
%NORMALEQN Computes the closed-form solution to linear regression
% NORMALEQN(X,y) computes the closed-form solution to linear
% regression using the normal equations.
theta = zeros(size(X, 2), 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the code to compute the closed form solution
% to linear regression and put the result in theta.
%
% ---------------------- Sample Solution ----------------------
theta = (X' * X)^-1 * X' * y;
% -------------------------------------------------------------
% ============================================================
end
线性回归与梯度下降(ML作业)的更多相关文章
- 线性回归、梯度下降(Linear Regression、Gradient Descent)
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...
- Andrew Ng机器学习公开课笔记 -- 线性回归和梯度下降
网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个 ...
- 机器学习算法整理(一)线性回归与梯度下降 python实现
回归算法 以下均为自己看视频做的笔记,自用,侵删! 一.线性回归 θ是bias(偏置项) 线性回归算法代码实现 # coding: utf-8 get_ipython().run_line_mag ...
- 斯坦福机器学习视频笔记 Week1 线性回归和梯度下降 Linear Regression and Gradient Descent
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...
- 线性回归和梯度下降代码demo
程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8 ...
- Machine Learning--week2 多元线性回归、梯度下降改进、特征缩放、均值归一化、多项式回归、正规方程与设计矩阵
对于multiple features 的问题(设有n个feature),hypothesis 应该改写成 \[ \mathit{h} _{\theta}(x) = \theta_{0} + \the ...
- 2018.4.23-ml笔记(线性回归、梯度下降)
线性回归:找到最合适的一条线来最好的拟合我们的数据点. hθ(x) = θixi=θTx θ被称之为权重参数 θ0为拟合参数 对每个样本yi=θTxi + εi 误差ε是独立并且具有 ...
- 机器学习算法(优化)之一:梯度下降算法、随机梯度下降(应用于线性回归、Logistic回归等等)
本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有 ...
- 从梯度下降到Fista
前言: FISTA(A fast iterative shrinkage-thresholding algorithm)是一种快速的迭代阈值收缩算法(ISTA).FISTA和ISTA都是基于梯度下降的 ...
随机推荐
- 如何使用Nsight Compute?
如何使用Nsight Compute? 下图command Line Argunments是指训练或测试命令,Linux下直接用测试或训练命令
- 预测汽车级Linux专业技术的需求
预测汽车级Linux专业技术的需求 Anticipating need for Automotive Grade Linux expertise 在听了多年汽车级Linux(AGL)及其所有潜力之后, ...
- switch分支语句
语句句式 Calendar c = Calendar.getInstance(); //获得一周的某天 int i = c.get(Calendar.DAY_OF_WEEK); switch (i) ...
- Java 并发基础知识
一.什么是线程和进程? 进程: 是程序的一次执行过程,是系统运行程序的基本单元(就比如打开某个应用,就是开启了一个进程),因此进程是动态的.系统运行一个程序即是一个程序从创建.运行到消亡的过程. 在 ...
- 菜鸟刷题路:剑指 Offer 05. 替换空格
剑指 Offer 05. 替换空格 class Solution { public String replaceSpace(String s) { StringBuilder str = new St ...
- RobotFramework常用断言关键字
变量或者关键字内容判断关键字 1.内容包含或者不包含:should contain . should not contain 与should contain x times *** Test Case ...
- 【NX二次开发】获取指定矩阵标识的矩阵值
函数:UF_CSYS_ask_matrix_values () 函数说明:获取指定矩阵标识的矩阵值. 用法: #include <uf.h> #include <uf_csys.h& ...
- Nginx为什么能快到根本停不下来?
Nginx 以其高性能,稳定性,丰富的功能,简单的配置和低资源消耗而闻名.本文从底层原理分析 Nginx 为什么这么快! Nginx 的进程模型 Nginx 服务器,正常运行过程中: 多进程:一个 M ...
- noip模拟7[匹配·回家·寿司]
这次考试状态好像还是没有回来,只拿了55pts,还全是第一题的功劳,就是一个小KMP,然后还让我给打错了 就很难受,while打成了if,然后wa掉45分考完立马拿回来了,悔死了,害 第二题爆零了,为 ...
- noip2015 总结
神奇的幻方 题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,--,N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方:首先将1写在第一行的 ...