题目链接

https://www.luogu.com.cn/problem/P6136

题目大意

需要写一种数据结构,来维护一些非负整数( \(int\) 范围内)的升序序列,其中需要提供以下操作:

  1. 插入一个整数 \(x\) 。
  2. 删除一个整数 \(x\) (若有多个相同的数,只删除一个)。
  3. 查询整数 \(x\) 的排名(排名定义为比当前数小的数的个数 \(+1\) )。
  4. 查询排名为 \(x\) 的数(如果不存在,则认为是排名小于 \(x\) 的最大数。保证 \(x\) 不会超过当前数据结构中数的总数)。
  5. 求 \(x\) 的前驱(前驱定义为小于 \(x\) ,且最大的数)。
  6. 求 \(x\) 的后继(后继定义为大于 \(x\) ,且最小的数)。

其中,初始序列大小为 \(n\) ,询问/操作总数为 \(m\) ,并要求 强制在线

数据范围 \(n \leq 10^5, m \leq 10^6\) , 单点时限 \(3s\) 。

题目解析

要求总复杂度为 \(O(N \log N)\) 级别,可以考虑伸展树( \(Splay\) ),对单个节点的查询、修改都维持在 \(O(\log N)\) 级别。

值得注意的是,这里代码中在数据集内多加入了一大( \(INF\) )一小( \(-1\) )两个虚设端点作为平衡树的上下限( \(front, back\) ),这样在实现查找、插入时可以避免越界,并能减少对于某些情况的特殊判断。

参考代码

#include <bits/stdc++.h>
#define N 1200005
#define EMPTY 0
#define INF INT_MAX
#define ll long long
using namespace std;
struct Tree{
int data, dataMin, dataMax, size, fa, child[2];
} t[N]; //其中data, fa, child为节点的基本属性
int cnt, root, front, back;
vector <int> dataset, nodeBin; inline void read(int &s) { //快读,支持int
s = 0;
int tt = 1, k = getchar();
for (; k < '0' || k > '9'; k = getchar()) if (k == '-') tt = -1;//判断该数正负
for (; k >= '0' && k <= '9'; k = getchar()) s = s * 10+(k ^ 48);//^48相当于-‘0’,较快。
s *= tt;
}
inline void write(ll s) { //快写,支持int和long long
int tt = 0, a[40];
if (s < 0) putchar('-'), s = -s;
do { a[++tt] = s % 10; } while (s /= 10);//用do while就不用特判一个0
while(tt) putchar(48+a[tt--]);
}
inline int checkSize(int x) { return (x == EMPTY) ? 0 : t[x].size;}
inline int checkDataMin(int x) { return (x == EMPTY) ? INF : t[x].dataMin;}
inline int checkDataMax(int x) { return (x == EMPTY) ? -INF : t[x].dataMax;}
inline void updNode(int x) {
t[x].size = checkSize(t[x].child[0]) + checkSize(t[x].child[1]) + 1;
t[x].dataMin = min(t[x].data, min(checkDataMin(t[x].child[0]), checkDataMin(t[x].child[1])));
t[x].dataMax = max(t[x].data, max(checkDataMax(t[x].child[0]), checkDataMax(t[x].child[1])));
}
void rotate(int x, int o)
{
int y = t[x].fa;
if (!y) return;
int z = t[y].fa;
t[y].child[o^1] = t[x].child[o];
if (t[x].child[o] != EMPTY) t[t[x].child[o]].fa = y;
t[x].fa = z;
if (z != EMPTY)
{
if (t[z].child[0] == y) t[z].child[0] = x;
else t[z].child[1] = x;
}
t[x].child[o] = y;
t[y].fa = x;
updNode(y);
updNode(x);
}
void splay(int x)
{
if (x == EMPTY) return;
int y;
while (t[x].fa != EMPTY)
{
y = t[x].fa;
if (t[y].fa == EMPTY) //旋转后为根节点
{
if (t[y].child[0] == x) rotate(x, 1);
else rotate(x, 0);
break;
}
else {
if (t[t[y].fa].child[1] == y)
{
if (t[y].child[0] == x) rotate(x, 1), rotate(x, 0);
else rotate(y, 0), rotate(x, 0);
}
else {
if (t[y].child[1] == x) rotate(x, 0), rotate(x, 1);
else rotate(y, 1), rotate(x, 1);
}
}
}
root = x;
} inline int mininum(int x) { //找x的子树中序号最小的
while (t[x].child[0] != EMPTY) x = t[x].child[0];
return x;
}
inline int maxinum(int x) { //找x的子树中序号最大的
while (t[x].child[1] != EMPTY) x = t[x].child[1];
return x;
}
inline int succ(int x) { //找x的后继
splay(x);
if (t[x].child[1] == EMPTY) return EMPTY;
return mininum(t[x].child[1]);
}
inline int prec(int x) { //找x的前驱
splay(x);
if (t[x].child[0] == EMPTY) return EMPTY;
return maxinum(t[x].child[0]);
}
int createNode(int data) //新建节点,存放data(优先取用废弃内存池)
{
if (nodeBin.empty())
{
t[++cnt] = (Tree){data, data, data, 1, EMPTY, EMPTY, EMPTY};
return cnt;
}
int x = nodeBin.back();
t[x] = (Tree){data, data, data, 1, EMPTY, EMPTY, EMPTY};
nodeBin.pop_back();
return x;
}
int findKth(int x, int k) //找序号为k的节点
{
while (true)
{
if (x == EMPTY) return EMPTY;
int lc = checkSize(t[x].child[0]);
if (k <= lc) x = t[x].child[0];
else {
if (k == lc+1) return x;
else {x = t[x].child[1], k -= lc+1;}
}
}
}
inline int getKth(int x) { //找节点x的序号k
splay(x);
return checkSize(t[x].child[0]) + 1;
}
void insertKth(int x, int k) //将单节点x插入树中的序号k的位置
{
if (!root) {root = x; return;}
if (k <= 0 || k > t[root].size+1) return;
if (k == 1) {
int y = mininum(root);
if (y == EMPTY) return;
splay(y);
t[y].child[0] = x;
t[x].fa = y;
updNode(y);
return;
}
int y = findKth(root, k-1);
if (y == EMPTY) return;
splay(y);
t[x].child[1] = t[y].child[1];
if (t[y].child[1] != EMPTY) t[t[y].child[1]].fa = x;
t[y].child[1] = EMPTY;
t[x].child[0] = y;
t[y].fa= x;
root = x;
updNode(y);
updNode(x);
}
void deleteKth(int k) //删除树上序号为k的节点
{
if (!root) {return;}
if (k <= 0 || k > t[root].size) return;
if (k == 1) {
int y = mininum(root);
if (y == EMPTY) return;
nodeBin.push_back(y);
splay(y);
if (t[y].child[1] != EMPTY) t[t[y].child[1]].fa = EMPTY, root = t[y].child[1];
else root = 0;
return;
}
int y = findKth(root, k);
if (y == EMPTY) return;
splay(y);
nodeBin.push_back(y);
int z = prec(y);
t[z].child[1] = t[y].child[1];
if (t[y].child[1] != EMPTY) t[t[y].child[1]].fa = z;
t[t[y].child[0]].fa = EMPTY;
root = t[y].child[0];
while (z != EMPTY)
{
updNode(z);
z = t[z].fa;
}
}
int buildTree(int L, int R, int fa) //建树,data取用dataset[L]~[R],L>0
{
if (L > R) return EMPTY;
if (L == R) {
t[L] = (Tree){dataset[L], dataset[L], dataset[L], 1, fa, EMPTY, EMPTY};
return L;
}
int mid = (L+R)/2;
t[mid] = (Tree){dataset[mid], 0, 0, 0, fa, EMPTY, EMPTY};
t[mid].child[0] = buildTree(L, mid-1, mid);
t[mid].child[1] = buildTree(mid+1, R, mid);
updNode(mid);
return mid;
}
inline void clearAll() { //清空全部
cnt = 0;
dataset.clear();
nodeBin.clear();
root = 0;
}
int findDataLeq(int x, int data) //找到x的子树上<=Data的最大序号的节点
{
int a = EMPTY;
if (x == EMPTY) return EMPTY;
if (data < t[x].dataMin) return EMPTY;
if (t[x].child[1] != EMPTY) {
if (data >= checkDataMin(t[x].child[1])) {
a = findDataLeq(t[x].child[1], data);
}
}
if (a != EMPTY) return a;
if (t[x].data <= data) return x;
if (t[x].child[0] != EMPTY) {
if (data >= checkDataMin(t[x].child[0])) {
a = findDataLeq(t[x].child[0], data);
}
}
if (a != EMPTY) return a;
return EMPTY;
}
int findDataGeq(int x, int data) //找到x的子树上>=Data的最小序号的节点
{
int a = EMPTY;
if (x == EMPTY) return EMPTY;
if (data > t[x].dataMax) return EMPTY;
if (t[x].child[0] != EMPTY) {
if (data <= checkDataMax(t[x].child[0])) {
a = findDataGeq(t[x].child[0], data);
}
}
if (a != EMPTY) return a;
if (t[x].data >= data) return x;
if (t[x].child[1] != EMPTY) {
if (data <= checkDataMax(t[x].child[1])) {
a = findDataGeq(t[x].child[1], data);
}
}
if (a != EMPTY) return a;
return EMPTY;
}
inline void printTree() { //将树上每个节点data按序输出
int x = mininum(root);
while (x != EMPTY) {
write(t[x].data);
x = succ(x);
if (x != EMPTY) putchar(' ');
}
putchar('\n');
}
int main()
{
int n, m, last = 0, ans = 0;
read(n); read(m);
dataset.push_back(-2);
dataset.push_back(-1);
for (int i = 0; i < n; ++i) {
int x;
read(x);
dataset.push_back(x);
}
dataset.push_back(INF);
sort(dataset.begin(), dataset.end());
root = buildTree(1, cnt = n+2, EMPTY);
front = 1, back = cnt;
while (m--)
{
int opt, x;
read(opt), read(x);
x ^= last;
switch (opt) {
case 1: //插入整数data->x
splay(back);
insertKth(createNode(x), getKth(findDataLeq(back, x))+1); break;
case 2: //删除整数data->x
splay(front);
deleteKth(getKth(findDataGeq(front, x))); break;
case 3: //查询x的排名
splay(back);
last = getKth(findDataLeq(back, x-1));
ans ^= last;
break;
case 4: //查询第x个data
last = t[findKth(root, x+1)].data;
ans ^= last;
break;
case 5: //查询小于x的最大data
splay(front);
last = t[findDataLeq(front, x-1)].data;
ans ^= last;
break;
case 6: //查询大于x的最小data
splay(back);
last = t[findDataGeq(back, x+1)].data;
ans ^= last;
break;
}
}
write(ans);
putchar('\n');
return 0;
}

感谢支持!

【模板】Splay(伸展树)普通平衡树(数据加强版)/洛谷P6136的更多相关文章

  1. 【学时总结】◆学时·VI◆ SPLAY伸展树

    ◆学时·VI◆ SPLAY伸展树 平衡树之多,学之不尽也…… ◇算法概述 二叉排序树的一种,自动平衡,由 Tarjan 提出并实现.得名于特有的 Splay 操作. Splay操作:将节点u通过单旋. ...

  2. Splay伸展树学习笔记

    Splay伸展树 有篇Splay入门必看文章 —— CSDN链接 经典引文 空间效率:O(n) 时间效率:O(log n)插入.查找.删除 创造者:Daniel Sleator 和 Robert Ta ...

  3. Splay伸展树入门(单点操作,区间维护)附例题模板

    Pps:终于学会了伸展树的区间操作,做一个完整的总结,总结一下自己的伸展树的单点操作和区间维护,顺便给未来的自己总结复习用. splay是一种平衡树,[平均]操作复杂度O(nlogn).首先平衡树先是 ...

  4. [Splay伸展树]splay树入门级教程

    首先声明,本教程的对象是完全没有接触过splay的OIer,大牛请右上角.. 首先引入一下splay的概念,他的中文名是伸展树,意思差不多就是可以随意翻转的二叉树 PS:百度百科中伸展树读作:BoGa ...

  5. Splay 伸展树

    废话不说,有篇论文可供参考:杨思雨:<伸展树的基本操作与应用> Splay的好处可以快速分裂和合并. ===============================14.07.26更新== ...

  6. Codeforces 675D Tree Construction Splay伸展树

    链接:https://codeforces.com/problemset/problem/675/D 题意: 给一个二叉搜索树,一开始为空,不断插入数字,每次插入之后,询问他的父亲节点的权值 题解: ...

  7. UVA 11922 Permutation Transformer —— splay伸展树

    题意:根据m条指令改变排列1 2 3 4 … n ,每条指令(a, b)表示取出第a~b个元素,反转后添加到排列尾部 分析:用一个可分裂合并的序列来表示整个序列,截取一段可以用两次分裂一次合并实现,粘 ...

  8. [算法] 数据结构 splay(伸展树)解析

    前言 splay学了已经很久了,只不过一直没有总结,鸽了好久来写一篇总结. 先介绍 splay:亦称伸展树,为二叉搜索树的一种,部分操作能在 \(O( \log n)\) 内完成,如插入.查找.删除. ...

  9. 线段树入门详解,洛谷P3372 【模板】线段树 1

    关于线段树: 本随笔参考例题      P3372 [模板]线段树 1 所谓线段树就是把一串数组拆分成一个一个线段形成的一棵树. 比如说像这样的一个数组1,2,3,4,5: 1 ~ 5 /       ...

随机推荐

  1. Luogu P1538 迎春舞会之数字舞蹈 | 模拟

    题目链接 大水题,暴力输出,代码应该能看吧...... #include<iostream> #include<cstdio> using namespace std; int ...

  2. hdu 5083 Instruction (稍比较复杂的模拟题)

    题意: 二进制指令转汇编指令,汇编指令转二进制指令. 思路: 额,条理分好,想全,思维不能乱. 代码: int findyu(char yu[50],char c){ int l=strlen(yu) ...

  3. Python技法4:闭包

    闭包:用函数代替类 有时我们会定义只有一个方法(除了__init__()之外)的类,而这种类可以通过使用闭包(closure)来替代.闭包是被外层函数包围的内层函数,它能够获取外层函数范围中的变量(即 ...

  4. IDEA免费激活至2099年教程,亲测可用

    申明,本教程 Intellij IDEA 最新版激活教程,激活码均收集与网络,请勿商用,仅供个人学习使用,如有侵权,请联系作者删除.如条件允许,建议大家购买正版. 以下是本人免费激活到 2099 年的 ...

  5. python环境搭建、pycharm安装

    一.      实验目标 (1)  Python环境搭建 (2)  会pycharm安装和使用 (3)  了解python程序设计流程 二.      实验内容 1.勾选Add Python 3.7 ...

  6. Abp Vnext Vue3 的版本实现

    基于ABP Vnext的二次开发,前端 vue3.0,Typescript,Ant Design Vue ,Vben Admin 的后台管理框架. 技术点 Net Core5.0 ABP Vnext ...

  7. RedHat 7.0 下 FTP 服务的安装,启动,配置,以及虚拟用户的建立

    (注意! 区分shell命令和往配置文件里加的代码不同) 一:ftp服务的安装,启动和启用.   1:vim /etc/sysconfig/selinux     改为disabled后重启     ...

  8. maven添加代理,默认的.m2路径

    Maven设置http代理 编辑~/.m2/settings.xml文件,添加如下配置 找到 <proxies> 节点.去掉相应的注释,设置代理信息如下: 1 <proxy> ...

  9. IDEA中三种注释方式的快捷键

    三种注释方式   行注释.块注释.方法或类说明注释. 一.快捷键:Ctrl + /   使用Ctrl+ /, 添加行注释,再次使用,去掉行注释 二.演示代码 if (hallSites != null ...

  10. Effective C++ 总结笔记(六)

    七.模板与泛型编程 41.了解隐式接口和编译器多态 1.类和模板都支持接口和多态. 2.类的接口是显式定义的--函数签名.多态是通过虚函数在运行期体现的. 3.模板的接口是隐式的(由模板函数的实现代码 ...