Unknown Treasure

Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 2112    Accepted Submission(s): 771

Problem Description
On
the way to the next secret treasure hiding place, the mathematician
discovered a cave unknown to the map. The mathematician entered the cave
because it is there. Somewhere deep in the cave, she found a treasure
chest with a combination lock and some numbers on it. After quite a
research, the mathematician found out that the correct combination to
the lock would be obtained by calculating how many ways are there to
pick m different apples among n of them and modulo it with M. M is the product of several different primes.
 
Input
On the first line there is an integer T(T≤20) representing the number of test cases.

Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk. It is guaranteed that M=p1⋅p2⋅⋅⋅pk≤1018 and pi≤105 for every i∈{1,...,k}.
 
Output
For each test case output the correct combination on a line.
 
Sample Input
1
9 5 2
3 5
Sample Output
6
题意:就是让你求组合数C(n,m)的值模M=p1*p2*...pk的值这写p;
思路:中国剩余定理+lucas定理;
因为组合数比较大,模数乘起来也很大,所以我们先用lucas定理求出对每个模数所求得的模,然后再通过中国剩余定理求对那个大模数的模;
在使用中国剩余定理的时候,最后那个M可能会很大,所以乘法的时候可能会爆LL,要用快速乘去处理
  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<stdlib.h>
6 #include<queue>
7 #include<map>
8 #include<math.h>
9 using namespace std;
10 typedef long long LL;
11 int mod[20];
12 LL a[100005];
13 LL yu[30];
14 LL quick(LL n,LL m,LL p)
15 {
16 LL ans=1;
17 while(m)
18 {
19 if(m&1)
20 {
21 ans=ans*n%p;
22 }
23 n=n*n%p;
24 m/=2;
25 }
26 return ans;
27 }
28 LL lucas(LL n,LL m,LL p)
29 {
30 if(n==0)
31 {
32 return 1;
33 }
34 else
35 {
36 LL nn=n%p;
37 LL mm=m%p;
38 if(mm<nn)
39 return 0;
40 else
41 {
42 LL ni=a[mm-nn]*a[nn]%p;
43 ni=a[mm]*quick(ni,p-2,p)%p;
44 return ni*lucas(n/p,m/p,p);
45 }
46 }
47 }
48 LL mul(LL n, LL m,LL p)
49 {
50 n%=p;
51 m%=p;
52 LL ret=0;
53 while(m)
54 {
55 if(m&1)
56 {
57 ret=ret+n;
58 ret%=p;
59 }
60 m>>=1;
61 n<<=1;
62 n%=p;
63 }
64 return ret;
65 }
66 int main(void)
67 {
68 LL n,m;
69 int k;
70 int t;
71 scanf("%d",&k);
72 int i,j;
73 while(k--)
74 {
75 scanf("%lld %lld %d",&n,&m,&t);
76 for(i=0; i<t; i++)
77 {
78 scanf("%d",&mod[i]);
79 a[0]=1;
80 a[1]=1;
81 for(j=2; j<mod[i]; j++)
82 {
83 a[j]=a[j-1]*j%mod[i];
84 }
85 yu[i]=lucas(m,n,mod[i]);
86 }
87 LL sum=1;
88 for(i=0; i<t; i++)
89 {
90 sum*=(LL)mod[i];
91 }
92 LL acc=0;
93 for(i=0; i<t; i++)
94 {
95 LL kk=sum/mod[i];
96 LL ni=quick(kk%mod[i],mod[i]-2,mod[i]);
97 acc=(acc+mul(yu[i],mul(kk,ni,sum),sum)%sum)%sum;
98
99 }
100 acc=acc%sum+sum;
101 acc%=sum;
102 printf("%lld\n",acc);
103 }
104 return 0;
105 }

Unknown Treasure(hdu5446)的更多相关文章

  1. hdu 5446 Unknown Treasure Lucas定理+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  2. hdu 5446 Unknown Treasure 卢卡斯+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  3. HDU 5446 Unknown Treasure Lucas+中国剩余定理

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 Unknown Treasure 问题描述 On the way to the next se ...

  4. hdu 5446 Unknown Treasure lucas和CRT

    Unknown Treasure Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  5. Unknown Treasure (卢卡斯 + 孙子定理, 模板题)

    Unknown Treasure 参考链接 : https://www.cnblogs.com/linyujun/p/5199684.html 卢卡斯定理 : C(n, m) % p  =  C(n ...

  6. Hdu 5446 Unknown Treasure (2015 ACM/ICPC Asia Regional Changchun Online Lucas定理 + 中国剩余定理)

    题目链接: Hdu 5446 Unknown Treasure 题目描述: 就是有n个苹果,要选出来m个,问有多少种选法?还有k个素数,p1,p2,p3,...pk,结果对lcm(p1,p2,p3.. ...

  7. HDU 5446 Unknown Treasure

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  8. HDU 5446 Unknown Treasure Lucas+中国剩余定理+按位乘

    HDU 5446 Unknown Treasure 题意:求C(n, m) %(p[1] * p[2] ··· p[k])     0< n,m < 1018 思路:这题基本上算是模版题了 ...

  9. HDU5446 Unknown Treasure(组合数膜合数-->Lucas+中国剩余定理)

    >On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown ...

随机推荐

  1. 15.Pow(x, n)

    Pow(x, n) Total Accepted: 88351 Total Submissions: 317095 Difficulty: Medium Implement pow(x, n). 思路 ...

  2. 【题解】洛谷P1001 A+B Problem

    第一篇博客,献给2020年的残夏. 静听8月的热情与安宁,在竞赛中的时光如白驹过隙. 也不惧未知的风雨,努力向着既往的通途. 题目地址 https://www.luogu.com.cn/problem ...

  3. 点击下拉选择触发事件【c#】

    <asp:DropDownList ID="ddlRegionList" runat="server" AutoPostBack="true&q ...

  4. day9 图书设计项目

    总路由层url from django.conf.urls import url from django.contrib import admin from app01 import views ur ...

  5. CVTE第二次笔试

    选择瞎答得,直接编程题目 1. 使用递归将字符串中的数字去并按顺序打印 输入例  adfsafsfs123123eogie09789 输出例 123123 09789 #include<iost ...

  6. Https原理及证书管理

    Https原理及证书管理 SSL(Secure Sockets Layer,安全套接层)/TLS(Transport Layer Security,传输层安全)保证了客户端web服务器的连接安全.客户 ...

  7. C++之无子数

    题目如下: 1 #include <iostream> 2 3 using namespace std; 4 5 6 bool isThisNumhaveChild(int num); 7 ...

  8. C++易错小结

    C++ 11 vector 遍历方法小结 方法零,对C念念不舍的童鞋们习惯的写法: void ShowVec(const vector<int>& valList) { int c ...

  9. 5.Vue.js-模板语法

    Vue.js 使用了基于 HTML 的模版语法,允许开发者声明式地将 DOM 绑定至底层 Vue 实例的数据. Vue.js 的核心是一个允许你采用简洁的模板语法来声明式的将数据渲染进 DOM 的系统 ...

  10. java列表组件鼠标双击事件的实现

    Swing中提供两种列表组件,分别是列表框(JList)和组合框(JComboBox). 一.JList组件 构造方法: public JList():构造一个空的.具有只读模型的JList.publ ...