Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

A: intervention, exposure, treatment

consistency: \(Y=Y^A\) when A observed.

1.1 Individual casual effects

假设我们要探究变量A与变量Y的关系, 在设定\(A=a\)的情况下, Y一致对应有\(Y^{a}\).

倘若A是二元的, 即\(\{0, 1\}\), 则有相应的\(Y^0, Y^1\).

则对于某个个体来讲, A对于Y有casual effect, 若\(Y^0 \not = Y^1\).

举个例子来讲, 给宙斯后面来一棍子(A=1), 宙斯是否会晕\(Y^1=0\) or \(Y^1 =1\), 或者啥也不做也就是\(A=0\), 宙斯的状态\(Y^0\).

当\(Y^1 \not = Y^0\) 的时候, 我们可以判断, 是否给宙斯来一棍对于宙斯下一刻会不会晕有casual effect, 反之就是没有.

1.2 Average casual effects

刚刚是针对个体的causal effect 的定义, 接下来是average casual effect的概念.

实际上, 就是针对一族个体的集合, 探究操作A对于所关心的Y的是否存在影响.

实际上, 就是判断

\[\mathbb{E} [Y^a],
\]

的关系, 对于上面的二元的例子, 就是判断

\[\mathbb{E} [Y^0] == \mathbb{E}[Y^1],
\]

更进一步的, 由于\(Y\)本身也是二元的\(\{0, 1 \}\), 所以可以进一步简化为

\[\mathrm{Pr}[Y^0=1] == \mathrm{Pr}[Y^1 = 1].
\]

1.5 Causation versus association

我们可以知道, \(Y=Y^a, \: if \: A=a\), 更精准的

\[\mathrm{Pr}(Y|A=a) = \mathrm{Pr}(Y^a|A=a),
\]

这是因果推断里很重要的一致性(consistency)的概念, 或许把它作为一个假设更为合理.

要知道, 我们在实际计算causal effects 的时候用到的是边际概率分布\(\mathrm{Pr}(Y^a)\).

观察可知, 当\(A, Y^a\)相互独立的时候, 我们可以得到

\[\mathrm{Pr}(Y^a) = \mathrm{Pr}(Y^a| A=a),
\]

此时causation 和 association 便是一致的了.

association 可以理解为

\[\mathbb{E}[Y|A] = \mathbb{E}[Y^A|A],
\]

与causation非常类似.

想要区分二者的区别, 还是得看原文, 从例子的角度出发, 否者还是难以掌握.

一言以蔽之, association, 即条件概率, 实际上分析的是某一个特定人群执行某些操作的结果, 而causation则是希望在一个更大的范围内, 一视同仁的判断概操作对这些人的影响, 忽略这特定人群的某些特定性质的影响.

Chapter 1 A Definition of Causal Effect的更多相关文章

  1. Chapter 6 Graphical Representation of Causal Effects

    目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...

  2. Chapter 4 Effect Modification

    目录 4.1 Definition of effect modification 4.2 Stratification to identify effect modification 4.3 Why ...

  3. Targeted Learning R Packages for Causal Inference and Machine Learning(转)

    Targeted learning methods build machine-learning-based estimators of parameters defined as features ...

  4. Chapter 7 Confounding

    目录 7.1 The structure of confounding Confounding and exchangeability Confounding and the backdoor cri ...

  5. Chapter 2 Randomized Experiments

    目录 概 2.1 Randomization 2.2 Conditional randomization 2.3 Standardization 2.4 Inverse probability wei ...

  6. 【统计】Causal Inference

    [统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causa ...

  7. Causal Inference

    目录 Standardization 非参数情况 Censoring 参数模型 Time-varying 静态 IP weighting 无参数 Censoring 参数模型 censoring 条件 ...

  8. Chapter 22 Target Trial Emulation

    目录 22.1 The target trial 22.2 Causal effects in randomized trails 22.3 Causal effects in observation ...

  9. Chapter 21 G-Methods for Time-Varying Treatments

    目录 21.1 The g-formula for time-varying treatments 21.2 IP weighting for time-varying treatments 21.3 ...

随机推荐

  1. cephfs文件系统场景

    创建cephfs文件系统: [cephfsd@ceph-admin ceph]$ cd /etc/ceph [cephfsd@ceph-admin ceph]$ ceph fs ls No files ...

  2. Linux磁盘分区(三)之查看磁盘分区常用命令

    Linux磁盘分区(三)之查看磁盘分区常用命令转自https://blog.csdn.net/x356982611/article/details/77893264 1.df     df -T 总的 ...

  3. Windows 下 Node.js 开发环境搭建

    1.利用CentOS Linux系统自带的yum命令安装.升级所需的程序库: sudo -s LANG=C yum -y install gcc gcc-c++ autoconf libjpeg li ...

  4. 【编程思想】【设计模式】【行为模式Behavioral】Publish_Subscribe

    Python版 https://github.com/faif/python-patterns/blob/master/behavioral/publish_subscribe.py #!/usr/b ...

  5. 【Linux】【Basis】进程及作业管理

    进程及作业管理       内核的功用:进程管理.文件系统.网络功能.内存管理.驱动程序.安全功能       Process: 运行中的程序的一个副本:         存在生命周期       L ...

  6. GET传参数方式

    controller:/getDetail/{id} /getDetail?id1234567 /getDetail?id=id1234567

  7. Python初探——sklearn库中数据预处理函数fit_transform()和transform()的区别

    敲<Python机器学习及实践>上的code的时候,对于数据预处理中涉及到的fit_transform()函数和transform()函数之间的区别很模糊,查阅了很多资料,这里整理一下: ...

  8. 【C#】【MySQL】C#连接MySQL数据库(二)解析

    C# MySQL 实现简单登录验证 后端代码解析 Visual Studio中使用MySQL的环境配置 下文所有到的代码(前端后端) 请查阅这篇博文 C#连接MySQL数据库(一)代码 获取前端数据 ...

  9. Markdown随时记录

    Markdown学习 推荐文本编译器 Typora 标题(支持六级) 一级标题:# + 空格 + 内容 二级标题:## + 空格 + 内容 三级标题:### + 空格 + 内容 . . . 字体 粗体 ...

  10. 查看MySQL正在执行的线程

    一.使用SQL语句查询正在执行的线程 SHOW PROCESSLIST; 二.使用kill 线程id就可以结束线程(引起数据变化的线程需特别小心) SHOW PROCESSLIST; +------+ ...