Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

A: intervention, exposure, treatment

consistency: \(Y=Y^A\) when A observed.

1.1 Individual casual effects

假设我们要探究变量A与变量Y的关系, 在设定\(A=a\)的情况下, Y一致对应有\(Y^{a}\).

倘若A是二元的, 即\(\{0, 1\}\), 则有相应的\(Y^0, Y^1\).

则对于某个个体来讲, A对于Y有casual effect, 若\(Y^0 \not = Y^1\).

举个例子来讲, 给宙斯后面来一棍子(A=1), 宙斯是否会晕\(Y^1=0\) or \(Y^1 =1\), 或者啥也不做也就是\(A=0\), 宙斯的状态\(Y^0\).

当\(Y^1 \not = Y^0\) 的时候, 我们可以判断, 是否给宙斯来一棍对于宙斯下一刻会不会晕有casual effect, 反之就是没有.

1.2 Average casual effects

刚刚是针对个体的causal effect 的定义, 接下来是average casual effect的概念.

实际上, 就是针对一族个体的集合, 探究操作A对于所关心的Y的是否存在影响.

实际上, 就是判断

\[\mathbb{E} [Y^a],
\]

的关系, 对于上面的二元的例子, 就是判断

\[\mathbb{E} [Y^0] == \mathbb{E}[Y^1],
\]

更进一步的, 由于\(Y\)本身也是二元的\(\{0, 1 \}\), 所以可以进一步简化为

\[\mathrm{Pr}[Y^0=1] == \mathrm{Pr}[Y^1 = 1].
\]

1.5 Causation versus association

我们可以知道, \(Y=Y^a, \: if \: A=a\), 更精准的

\[\mathrm{Pr}(Y|A=a) = \mathrm{Pr}(Y^a|A=a),
\]

这是因果推断里很重要的一致性(consistency)的概念, 或许把它作为一个假设更为合理.

要知道, 我们在实际计算causal effects 的时候用到的是边际概率分布\(\mathrm{Pr}(Y^a)\).

观察可知, 当\(A, Y^a\)相互独立的时候, 我们可以得到

\[\mathrm{Pr}(Y^a) = \mathrm{Pr}(Y^a| A=a),
\]

此时causation 和 association 便是一致的了.

association 可以理解为

\[\mathbb{E}[Y|A] = \mathbb{E}[Y^A|A],
\]

与causation非常类似.

想要区分二者的区别, 还是得看原文, 从例子的角度出发, 否者还是难以掌握.

一言以蔽之, association, 即条件概率, 实际上分析的是某一个特定人群执行某些操作的结果, 而causation则是希望在一个更大的范围内, 一视同仁的判断概操作对这些人的影响, 忽略这特定人群的某些特定性质的影响.

Chapter 1 A Definition of Causal Effect的更多相关文章

  1. Chapter 6 Graphical Representation of Causal Effects

    目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...

  2. Chapter 4 Effect Modification

    目录 4.1 Definition of effect modification 4.2 Stratification to identify effect modification 4.3 Why ...

  3. Targeted Learning R Packages for Causal Inference and Machine Learning(转)

    Targeted learning methods build machine-learning-based estimators of parameters defined as features ...

  4. Chapter 7 Confounding

    目录 7.1 The structure of confounding Confounding and exchangeability Confounding and the backdoor cri ...

  5. Chapter 2 Randomized Experiments

    目录 概 2.1 Randomization 2.2 Conditional randomization 2.3 Standardization 2.4 Inverse probability wei ...

  6. 【统计】Causal Inference

    [统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causa ...

  7. Causal Inference

    目录 Standardization 非参数情况 Censoring 参数模型 Time-varying 静态 IP weighting 无参数 Censoring 参数模型 censoring 条件 ...

  8. Chapter 22 Target Trial Emulation

    目录 22.1 The target trial 22.2 Causal effects in randomized trails 22.3 Causal effects in observation ...

  9. Chapter 21 G-Methods for Time-Varying Treatments

    目录 21.1 The g-formula for time-varying treatments 21.2 IP weighting for time-varying treatments 21.3 ...

随机推荐

  1. 乱序拼图验证的识别并还原-puzzle-captcha

    一.前言 乱序拼图验证是一种较少见的验证码防御,市面上更多的是拖动滑块,被完美攻克的有不少,都在行为轨迹上下足了功夫,本文不讨论轨迹模拟范畴,就只针对拼图还原进行研究. 找一个市面比较普及的顶像乱序拼 ...

  2. tomcat 之 httpd session stiky

    # 注释中心主机 [root@nginx ~]# vim /etc/httpd/conf/httpd.conf #DocumentRoot "/var/www/html" #:配置 ...

  3. Nodejs源码解析之module

    modulejs的导入 Require函数详解 module路径解析 module.js的导入 module.js是由node.js在Nodejs程序启动的时候导入的.module.js中使用的req ...

  4. VUE页面实现加载外部HTML方法

    前后端分离,后端提供了接口.但有一部分数据,比较产品说明文件,是存在其他的服务器上的.所以,在页面显示的时候,如果以页面内嵌的形式显示这个说明文件.需要搞点事情以达到想要的效果.本文主要和大家介绍VU ...

  5. webpack配置(vue)

    Vue-loader Vue-loader 是一个加载器,能把 .vue 文件转换为js模块. Vue Loader 的配置和其它的 loader 不太一样.除了将 vue-loader 应用到所有扩 ...

  6. 莫烦python教程学习笔记——线性回归模型的属性

    #调用查看线性回归的几个属性 # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # ...

  7. 网络协议之:还在用HTTP代理?弱爆了!快试试SOCKS5

    目录 简介 为什么要使用SOCKS SOCKS5 SOCKS5的使用 总结 简介 存在即是合理,SOCKS5的出现是为了解决SOCKS4中不支持身份认证的大问题而出现的,毕竟大家对网络中的安全越来越重 ...

  8. CentOS6设置开机自启动

    1.把开机启动脚本(mysqld)copy到文件夹/etc/init.d 或 /etc/rc.d/init.d 中 2.将启动程序的命令添加到 /etc/rc.d/rc.local 文件中,比如: # ...

  9. <转>C/S架构分析

    系统架构师-基础到企业应用架构-客户端/服务器 开篇 上篇,我们介绍了,单机软件的架构,其实不管什么软件系统,都是为了解决实际中的一些问题,软件上为了更好的解决实际的问题才会产生,那么对于单机软 件的 ...

  10. LuoguP6553 Strings of Monody 题解

    Content 给定一个长度为 \(n\) 的字符串 \(s\)(仅包含 \(1,4,5\) 三种字符,\(n\) 在本题中无需输入),有 \(m\) 个操作,每次操作给定两个整数 \(l,r\),再 ...