Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

A: intervention, exposure, treatment

consistency: \(Y=Y^A\) when A observed.

1.1 Individual casual effects

假设我们要探究变量A与变量Y的关系, 在设定\(A=a\)的情况下, Y一致对应有\(Y^{a}\).

倘若A是二元的, 即\(\{0, 1\}\), 则有相应的\(Y^0, Y^1\).

则对于某个个体来讲, A对于Y有casual effect, 若\(Y^0 \not = Y^1\).

举个例子来讲, 给宙斯后面来一棍子(A=1), 宙斯是否会晕\(Y^1=0\) or \(Y^1 =1\), 或者啥也不做也就是\(A=0\), 宙斯的状态\(Y^0\).

当\(Y^1 \not = Y^0\) 的时候, 我们可以判断, 是否给宙斯来一棍对于宙斯下一刻会不会晕有casual effect, 反之就是没有.

1.2 Average casual effects

刚刚是针对个体的causal effect 的定义, 接下来是average casual effect的概念.

实际上, 就是针对一族个体的集合, 探究操作A对于所关心的Y的是否存在影响.

实际上, 就是判断

\[\mathbb{E} [Y^a],
\]

的关系, 对于上面的二元的例子, 就是判断

\[\mathbb{E} [Y^0] == \mathbb{E}[Y^1],
\]

更进一步的, 由于\(Y\)本身也是二元的\(\{0, 1 \}\), 所以可以进一步简化为

\[\mathrm{Pr}[Y^0=1] == \mathrm{Pr}[Y^1 = 1].
\]

1.5 Causation versus association

我们可以知道, \(Y=Y^a, \: if \: A=a\), 更精准的

\[\mathrm{Pr}(Y|A=a) = \mathrm{Pr}(Y^a|A=a),
\]

这是因果推断里很重要的一致性(consistency)的概念, 或许把它作为一个假设更为合理.

要知道, 我们在实际计算causal effects 的时候用到的是边际概率分布\(\mathrm{Pr}(Y^a)\).

观察可知, 当\(A, Y^a\)相互独立的时候, 我们可以得到

\[\mathrm{Pr}(Y^a) = \mathrm{Pr}(Y^a| A=a),
\]

此时causation 和 association 便是一致的了.

association 可以理解为

\[\mathbb{E}[Y|A] = \mathbb{E}[Y^A|A],
\]

与causation非常类似.

想要区分二者的区别, 还是得看原文, 从例子的角度出发, 否者还是难以掌握.

一言以蔽之, association, 即条件概率, 实际上分析的是某一个特定人群执行某些操作的结果, 而causation则是希望在一个更大的范围内, 一视同仁的判断概操作对这些人的影响, 忽略这特定人群的某些特定性质的影响.

Chapter 1 A Definition of Causal Effect的更多相关文章

  1. Chapter 6 Graphical Representation of Causal Effects

    目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...

  2. Chapter 4 Effect Modification

    目录 4.1 Definition of effect modification 4.2 Stratification to identify effect modification 4.3 Why ...

  3. Targeted Learning R Packages for Causal Inference and Machine Learning(转)

    Targeted learning methods build machine-learning-based estimators of parameters defined as features ...

  4. Chapter 7 Confounding

    目录 7.1 The structure of confounding Confounding and exchangeability Confounding and the backdoor cri ...

  5. Chapter 2 Randomized Experiments

    目录 概 2.1 Randomization 2.2 Conditional randomization 2.3 Standardization 2.4 Inverse probability wei ...

  6. 【统计】Causal Inference

    [统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causa ...

  7. Causal Inference

    目录 Standardization 非参数情况 Censoring 参数模型 Time-varying 静态 IP weighting 无参数 Censoring 参数模型 censoring 条件 ...

  8. Chapter 22 Target Trial Emulation

    目录 22.1 The target trial 22.2 Causal effects in randomized trails 22.3 Causal effects in observation ...

  9. Chapter 21 G-Methods for Time-Varying Treatments

    目录 21.1 The g-formula for time-varying treatments 21.2 IP weighting for time-varying treatments 21.3 ...

随机推荐

  1. A Child's History of England.19

    The King was at first as blind and stubborn as kings usually have been whensoever [每当] they have bee ...

  2. Mysql索引数据结构详解(1)

    慢查询解决:使用索引  索引是帮助Mysql高效获取数据的排好序的数据结构 常见的存储数据结构: 二叉树    二叉树不适合单边增长的数据 红黑树(又称二叉平衡树)    红黑树会自动平衡父节点两边的 ...

  3. Spark中的分区方法详解

    转自:https://blog.csdn.net/dmy1115143060/article/details/82620715 一.Spark数据分区方式简要 在Spark中,RDD(Resilien ...

  4. windows磁盘扩容

    要邻近的磁盘,才可以扩展.所以必须要先删除恢复分区. 删除恢复分区,参考如下: https://jingyan.baidu.com/article/574c5219598d5e6c8c9dc15e.h ...

  5. db9串口接头的定义

    这个接头都是以公头为准,所有接头还是以公头去记. RS-232端(DB9公头/针型)引脚定义 2: RXD 3:TXD 5:GND 1/4/6:内部相链接 7/8   :内部相链接 1.RS-232端 ...

  6. 4.2 rust 命令行参数

     从命令行读取参数 use std::env; fn main() { let args: Vec<String> = env::args().collect(); println!(&q ...

  7. JAVA序列化浅析

    java.io.Serializable浅析 Java API中java.io.Serializable接口源码: 1 public interface Serializable { 2 } 类通过实 ...

  8. 从orderby引发的SQL注入问题的思考

    背景: 某一天准备上线,合完master之后准备发布了,忽然公司的代码安全监测提示了可能在代码中存在sql注入的风险,遂即检查,发现sql注入问题 既然碰到了这个问题,那就了简单了解下sql注入 基础 ...

  9. 【C/C++】贪心/算法笔记4.4/PAT B1020月饼/PAT B1023组内最小数

    简单贪心 所谓简单贪心,就是每步都取最优的一种方法. 月饼问题:有N种月饼,市场最大需求量D,给出每种月饼的库存量和总售价. 思路:从贵的往便宜的卖.如果当前的已经卖完了,就卖下一个.如果剩余D不足, ...

  10. 【Linux】【专项突破】Linux重定向与管道

    [专项突破]Linux重定向与管道 This article is written by Xrilang(Chinese Name:萌狼蓝天) If you want find me ,You can ...