Chapter 1 A Definition of Causal Effect
A: intervention, exposure, treatment
consistency: \(Y=Y^A\) when A observed.
1.1 Individual casual effects
假设我们要探究变量A与变量Y的关系, 在设定\(A=a\)的情况下, Y一致对应有\(Y^{a}\).
倘若A是二元的, 即\(\{0, 1\}\), 则有相应的\(Y^0, Y^1\).
则对于某个个体来讲, A对于Y有casual effect, 若\(Y^0 \not = Y^1\).
举个例子来讲, 给宙斯后面来一棍子(A=1), 宙斯是否会晕\(Y^1=0\) or \(Y^1 =1\), 或者啥也不做也就是\(A=0\), 宙斯的状态\(Y^0\).
当\(Y^1 \not = Y^0\) 的时候, 我们可以判断, 是否给宙斯来一棍对于宙斯下一刻会不会晕有casual effect, 反之就是没有.
1.2 Average casual effects
刚刚是针对个体的causal effect 的定义, 接下来是average casual effect的概念.
实际上, 就是针对一族个体的集合, 探究操作A对于所关心的Y的是否存在影响.
实际上, 就是判断
\]
的关系, 对于上面的二元的例子, 就是判断
\]
更进一步的, 由于\(Y\)本身也是二元的\(\{0, 1 \}\), 所以可以进一步简化为
\]
1.5 Causation versus association
我们可以知道, \(Y=Y^a, \: if \: A=a\), 更精准的
\]
这是因果推断里很重要的一致性(consistency)的概念, 或许把它作为一个假设更为合理.
要知道, 我们在实际计算causal effects 的时候用到的是边际概率分布\(\mathrm{Pr}(Y^a)\).
观察可知, 当\(A, Y^a\)相互独立的时候, 我们可以得到
\]
此时causation 和 association 便是一致的了.
association 可以理解为
\]
与causation非常类似.
想要区分二者的区别, 还是得看原文, 从例子的角度出发, 否者还是难以掌握.
一言以蔽之, association, 即条件概率, 实际上分析的是某一个特定人群执行某些操作的结果, 而causation则是希望在一个更大的范围内, 一视同仁的判断概操作对这些人的影响, 忽略这特定人群的某些特定性质的影响.
Chapter 1 A Definition of Causal Effect的更多相关文章
- Chapter 6 Graphical Representation of Causal Effects
目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...
- Chapter 4 Effect Modification
目录 4.1 Definition of effect modification 4.2 Stratification to identify effect modification 4.3 Why ...
- Targeted Learning R Packages for Causal Inference and Machine Learning(转)
Targeted learning methods build machine-learning-based estimators of parameters defined as features ...
- Chapter 7 Confounding
目录 7.1 The structure of confounding Confounding and exchangeability Confounding and the backdoor cri ...
- Chapter 2 Randomized Experiments
目录 概 2.1 Randomization 2.2 Conditional randomization 2.3 Standardization 2.4 Inverse probability wei ...
- 【统计】Causal Inference
[统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causa ...
- Causal Inference
目录 Standardization 非参数情况 Censoring 参数模型 Time-varying 静态 IP weighting 无参数 Censoring 参数模型 censoring 条件 ...
- Chapter 22 Target Trial Emulation
目录 22.1 The target trial 22.2 Causal effects in randomized trails 22.3 Causal effects in observation ...
- Chapter 21 G-Methods for Time-Varying Treatments
目录 21.1 The g-formula for time-varying treatments 21.2 IP weighting for time-varying treatments 21.3 ...
随机推荐
- A Child's History of England.19
The King was at first as blind and stubborn as kings usually have been whensoever [每当] they have bee ...
- Mysql索引数据结构详解(1)
慢查询解决:使用索引 索引是帮助Mysql高效获取数据的排好序的数据结构 常见的存储数据结构: 二叉树 二叉树不适合单边增长的数据 红黑树(又称二叉平衡树) 红黑树会自动平衡父节点两边的 ...
- Spark中的分区方法详解
转自:https://blog.csdn.net/dmy1115143060/article/details/82620715 一.Spark数据分区方式简要 在Spark中,RDD(Resilien ...
- windows磁盘扩容
要邻近的磁盘,才可以扩展.所以必须要先删除恢复分区. 删除恢复分区,参考如下: https://jingyan.baidu.com/article/574c5219598d5e6c8c9dc15e.h ...
- db9串口接头的定义
这个接头都是以公头为准,所有接头还是以公头去记. RS-232端(DB9公头/针型)引脚定义 2: RXD 3:TXD 5:GND 1/4/6:内部相链接 7/8 :内部相链接 1.RS-232端 ...
- 4.2 rust 命令行参数
从命令行读取参数 use std::env; fn main() { let args: Vec<String> = env::args().collect(); println!(&q ...
- JAVA序列化浅析
java.io.Serializable浅析 Java API中java.io.Serializable接口源码: 1 public interface Serializable { 2 } 类通过实 ...
- 从orderby引发的SQL注入问题的思考
背景: 某一天准备上线,合完master之后准备发布了,忽然公司的代码安全监测提示了可能在代码中存在sql注入的风险,遂即检查,发现sql注入问题 既然碰到了这个问题,那就了简单了解下sql注入 基础 ...
- 【C/C++】贪心/算法笔记4.4/PAT B1020月饼/PAT B1023组内最小数
简单贪心 所谓简单贪心,就是每步都取最优的一种方法. 月饼问题:有N种月饼,市场最大需求量D,给出每种月饼的库存量和总售价. 思路:从贵的往便宜的卖.如果当前的已经卖完了,就卖下一个.如果剩余D不足, ...
- 【Linux】【专项突破】Linux重定向与管道
[专项突破]Linux重定向与管道 This article is written by Xrilang(Chinese Name:萌狼蓝天) If you want find me ,You can ...