本节介绍一些例子.

LASSO

考虑如下问题:

\[\min \quad (1/2)\|Ax-b\|_2^2 + \gamma\|x\|_1,
\]

其中\(x \in \mathbb{R}^n, A \in \mathbb{R}^{m\times n }\).

proximal gradient method

proximal gradient method 是:

\[x^{k+1} := \mathbf{prox}_{\lambda g}(x^k - \lambda \nabla f(x^k))
\]

令\(f(x)=(1/2)\|Ax-b\|_2^2, g(x)=\gamma \|x\|_1\), 则

\[\nabla f(x) = A^T(Ax-b), \quad \mathbf{prox}_{\gamma g}(x)=S_{\gamma}(x),
\]

其中\(S_{\gamma}(x)\)是soft-thresholding.

ADMM

很自然的方法,不提了.

矩阵分解

一般的矩阵分解问题如下:



其中\(X_1, \ldots, X_N \in \mathbb{R}^{m\times n}\)为变量,而\(A \in \mathbb{R}^{m\times n }\)为数据矩阵.

不同的惩罚项\(\varphi\)会带来不同的效果.

  • \(\varphi(X)=\|X\|_F^2\), 这时,矩阵元素往往都比较接近且小
  • \(\varphi(X)=\|X\|_1\), 这会导致稀疏化
  • \(\varphi(X) = \sum_j \|x_j\|_2\), 其中\(x_j\)是\(X\)的第\(j\)列, 这会导致列稀疏?

其他的看文章吧.

ADMM算法

\[f(x) = \sum_{i=1}^N \varphi_i (X_i), \quad g(X)=I_{\mathcal{C}}(X),
\]

其中\(X = (X_1, \ldots, X_N)\), 并且:

\[\mathcal{C} = \{(X_1, \ldots, X_N| X_1 + \ldots + X_N=A\}.
\]

根据之前的分析,容易知道:

\[\Pi_{\mathcal{C}}=(X_1, \ldots, X_N)-\bar{X}+(1/N)A,
\]

其中\(\bar{X}\)是\(X_1, \ldots, X_N\)的各元素的平均.

最后算法总结为:

多时期股票交易

其问题是:

\[\min \quad \sum_{t=1}^T f_t(x_t) + \sum_{t=1}^T g_t (x_t - x_{t-1}),
\]

其中\(x_t, t=1,\ldots, T\)表示第\(t\)个时期所保持的股份,期权,而\(f_t\)则表示对应的风险,\(g_t\)表示第\(t\)个时期交易所需要耗费的资源.

考虑如下分割:

\[f(X)=\sum_{t=1}^ Tf_t(x_t), \quad g(X)=\sum_{t=1}^T g_t(x_t-x_{t-1}),
\]

其中\(X=[x_1, \ldots, x_T]\in\mathbb{R}^{n \times T}\).

随机最优

为如下问题:

\[\min \quad \sum_{k=1}^K \pi_k f^{(k)} (x),
\]

其中\(\pi \in \mathbb{R}_+^K\)是一个概率分布,满足\(1^T\pi=1\).

利用第5节的知识,将此问题化为:

\[\min \quad \sum_{k=1}^K \pi_k f^{(k)} (x^{(k)}) \\
s.t. \quad x^{(1)}=\ldots=x^{(K)}.
\]

再利用ADMM就可以了.

Robust and risk-averse optimization

鲁棒最优,特别的, 最小化最大风险:

\[\min \quad \max_{k=1, \ldots, K} f^{(k)}(x).
\]

更一般的:

\[\min \quad \varphi(f^{(1)}, \ldots, f^{(K)}(x)),
\]

其中\(\varphi\)为非降凸函数.

method

将上面的问题转化为:





视作\(f\)



作为\(g\),再利用ADMM求解即可.

Proximal Algorithms 7 Examples and Applications的更多相关文章

  1. Proximal Algorithms

    1. Introduction Much like Newton's method is a standard tool for solving unconstrained smooth minimi ...

  2. Proximal Algorithms 6 Evaluating Proximal Operators

    目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...

  3. Proximal Algorithms 5 Parallel and Distributed Algorithms

    目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...

  4. Proximal Algorithms 4 Algorithms

    目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...

  5. Proximal Algorithms 3 Interpretation

    目录 Moreau-Yosida regularization 与次梯度的联系 改进的梯度路径 信赖域问题 Proximal Algorithms 这一节,作者总结了一些关于proximal的一些直观 ...

  6. Proximal Algorithms 1 介绍

    目录 定义 解释 图形解释 梯度解释 一个简单的例子 Proximal Algorithms 定义 令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ ...

  7. Proximal Algorithms 2 Properties

    目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...

  8. OpenCASCADE Hidden Line Removal

    OpenCASCADE Hidden Line Removal eryar@163.com Abstract. To provide the precision required in industr ...

  9. 计算机视觉code与软件

    Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...

随机推荐

  1. 【swift】用Xib实现自定义警告框(Alert)(安卓叫法:Dialog对话框)

    在写这篇博客前,先感谢两篇博客 [如何自定义的思路]:https://www.cnblogs.com/apprendre-10-28/p/10507794.html [如何绑定Xib并且使用]:htt ...

  2. 【Android】安装插件 + 改变文字大小、颜色 + 隐藏代码区块的直线

    安装插件 可以在搜寻框里面填入关键字搜寻,具体的插件,网上有很多介绍了 改变文字大小.颜色 隐藏代码区块的直线

  3. Linux启动初始化配置文件

    Linux启动初始化配置文件(1)/etc/profile 登录时,会执行. 全局(公有)配置,不管是哪个用户,登录时都会读取该文件. (2)/ect/bashrc Ubuntu没有此文件,与之对应的 ...

  4. c学习 - 第三章:数据类型、运算符与表达式

    数据类型 基本类型 整型 短整型(short int) 基本整型(int) 长整型(long int) 字符型(char) 浮点型 单精度(float) 双精度(double) 长双精度(long d ...

  5. Vue API 3模板语法 ,指令

    条件# v-if# v-if 指令用于条件性地渲染一块内容.这块内容只会在指令的表达式返回 truthy 值的时候被渲染. v-show# v-show 指令也是用于根据条件展示一块内容.v-show ...

  6. Spring整合Ibatis之SqlMapClientDaoSupport

    前言 HibernateDaoSupport   SqlMapClientDaoSupport . 其实就作用而言两者是一样的,都是为提供DAO支持,为访问数据库提供支持. 只不过HibernateD ...

  7. ReactiveCocoa操作方法-重复

    retry重试      只要失败,就会重新执行创建信号中的block,直到成功. __block int i = 0; [[[RACSignal createSignal:^RACDisposabl ...

  8. SpringMVC(4):文件上传与下载

    一,文件上传 文件上传是项目开发中最常见的功能之一 ,springMVC 可以很好的支持文件上传,但是SpringMVC上下文中默认没有装配MultipartResolver,因此默认情况下其不能处理 ...

  9. C++易错小结

    C++ 11 vector 遍历方法小结 方法零,对C念念不舍的童鞋们习惯的写法: void ShowVec(const vector<int>& valList) { int c ...

  10. AOP中环绕通知的书写和配置

    package com.hope.utils;import org.aspectj.lang.ProceedingJoinPoint;import org.aspectj.lang.annotatio ...