本节介绍一些例子.

LASSO

考虑如下问题:

\[\min \quad (1/2)\|Ax-b\|_2^2 + \gamma\|x\|_1,
\]

其中\(x \in \mathbb{R}^n, A \in \mathbb{R}^{m\times n }\).

proximal gradient method

proximal gradient method 是:

\[x^{k+1} := \mathbf{prox}_{\lambda g}(x^k - \lambda \nabla f(x^k))
\]

令\(f(x)=(1/2)\|Ax-b\|_2^2, g(x)=\gamma \|x\|_1\), 则

\[\nabla f(x) = A^T(Ax-b), \quad \mathbf{prox}_{\gamma g}(x)=S_{\gamma}(x),
\]

其中\(S_{\gamma}(x)\)是soft-thresholding.

ADMM

很自然的方法,不提了.

矩阵分解

一般的矩阵分解问题如下:



其中\(X_1, \ldots, X_N \in \mathbb{R}^{m\times n}\)为变量,而\(A \in \mathbb{R}^{m\times n }\)为数据矩阵.

不同的惩罚项\(\varphi\)会带来不同的效果.

  • \(\varphi(X)=\|X\|_F^2\), 这时,矩阵元素往往都比较接近且小
  • \(\varphi(X)=\|X\|_1\), 这会导致稀疏化
  • \(\varphi(X) = \sum_j \|x_j\|_2\), 其中\(x_j\)是\(X\)的第\(j\)列, 这会导致列稀疏?

其他的看文章吧.

ADMM算法

\[f(x) = \sum_{i=1}^N \varphi_i (X_i), \quad g(X)=I_{\mathcal{C}}(X),
\]

其中\(X = (X_1, \ldots, X_N)\), 并且:

\[\mathcal{C} = \{(X_1, \ldots, X_N| X_1 + \ldots + X_N=A\}.
\]

根据之前的分析,容易知道:

\[\Pi_{\mathcal{C}}=(X_1, \ldots, X_N)-\bar{X}+(1/N)A,
\]

其中\(\bar{X}\)是\(X_1, \ldots, X_N\)的各元素的平均.

最后算法总结为:

多时期股票交易

其问题是:

\[\min \quad \sum_{t=1}^T f_t(x_t) + \sum_{t=1}^T g_t (x_t - x_{t-1}),
\]

其中\(x_t, t=1,\ldots, T\)表示第\(t\)个时期所保持的股份,期权,而\(f_t\)则表示对应的风险,\(g_t\)表示第\(t\)个时期交易所需要耗费的资源.

考虑如下分割:

\[f(X)=\sum_{t=1}^ Tf_t(x_t), \quad g(X)=\sum_{t=1}^T g_t(x_t-x_{t-1}),
\]

其中\(X=[x_1, \ldots, x_T]\in\mathbb{R}^{n \times T}\).

随机最优

为如下问题:

\[\min \quad \sum_{k=1}^K \pi_k f^{(k)} (x),
\]

其中\(\pi \in \mathbb{R}_+^K\)是一个概率分布,满足\(1^T\pi=1\).

利用第5节的知识,将此问题化为:

\[\min \quad \sum_{k=1}^K \pi_k f^{(k)} (x^{(k)}) \\
s.t. \quad x^{(1)}=\ldots=x^{(K)}.
\]

再利用ADMM就可以了.

Robust and risk-averse optimization

鲁棒最优,特别的, 最小化最大风险:

\[\min \quad \max_{k=1, \ldots, K} f^{(k)}(x).
\]

更一般的:

\[\min \quad \varphi(f^{(1)}, \ldots, f^{(K)}(x)),
\]

其中\(\varphi\)为非降凸函数.

method

将上面的问题转化为:





视作\(f\)



作为\(g\),再利用ADMM求解即可.

Proximal Algorithms 7 Examples and Applications的更多相关文章

  1. Proximal Algorithms

    1. Introduction Much like Newton's method is a standard tool for solving unconstrained smooth minimi ...

  2. Proximal Algorithms 6 Evaluating Proximal Operators

    目录 一般方法 二次函数 平滑函数 标量函数 一般的标量函数 多边形 对偶 仿射集合 半平面 Box Simplex Cones 二阶锥 半正定锥 指数锥 Pointwise maximum and ...

  3. Proximal Algorithms 5 Parallel and Distributed Algorithms

    目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...

  4. Proximal Algorithms 4 Algorithms

    目录 Proximal minimization 解释 Gradient flow 解释1 最大最小算法 不动点解释 Forward-backward 迭代解释 加速 proximal gradien ...

  5. Proximal Algorithms 3 Interpretation

    目录 Moreau-Yosida regularization 与次梯度的联系 改进的梯度路径 信赖域问题 Proximal Algorithms 这一节,作者总结了一些关于proximal的一些直观 ...

  6. Proximal Algorithms 1 介绍

    目录 定义 解释 图形解释 梯度解释 一个简单的例子 Proximal Algorithms 定义 令\(f: \mathrm{R}^n \rightarrow \mathrm{R} \cup \{+ ...

  7. Proximal Algorithms 2 Properties

    目录 可分和 基本的运算 不动点 fixed points Moreau decomposition 可分和 如果\(f\)可分为俩个变量:\(f(x, y)=\varphi(x) + \psi(y) ...

  8. OpenCASCADE Hidden Line Removal

    OpenCASCADE Hidden Line Removal eryar@163.com Abstract. To provide the precision required in industr ...

  9. 计算机视觉code与软件

    Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...

随机推荐

  1. 零基础学习java------day15--------collections用法,比较器,Set(TreeSet,TreeMap),异常

    1. Collections用法 Collections: 集合的工具类public static <T> void sort(List<T> list) 排序,升序publi ...

  2. TCP中的TIME_WAIT状态

    TIME_WAIT的存在有两大理由 1.可靠地实现TCP全双工连接的终止 2.允许老的可重复分节在网络中消失. 对于理由1,我们知道TCP结束需要四次挥手,若最后一次的客户端的挥手ACK丢失(假设是客 ...

  3. @Transactional注解详细使用

    一.@Transactional 注解使用 @Transactional  注解只能用在public 方法上,如果用在protected或者private的方法上,不会报错,但是该注解不会生效. @T ...

  4. PS只能各个工具使用的注意知识点

    1.图章工具  <仿制图章工具>使用方法:按住alt点击吸取干净的地方,然后松开alt键,按住鼠标左键拖动或左击  擦拭 图章区域放大缩小,是按住alt键+鼠标右键左右滑动 当图片中多个图 ...

  5. redis入门到精通系列(八):redis的高可用--主从复制详解

    (一)主从复制介绍 前面所讲的关于redis的操作都属于单机操作,单机操作虽然操作简单,但是处理能力有限,无法高可用.所谓高可用性,就是指当一台服务器宕机的时候,有备用的服务器能顶替上,在单机操作上这 ...

  6. 【编程思想】【设计模式】【行为模式Behavioral】Specification

    Python版 https://github.com/faif/python-patterns/blob/master/behavioral/specification.py #!/usr/bin/e ...

  7. Spring Batch(0)——控制Step执行流程

    Conditional Flow in Spring Batch I just announced the new Learn Spring course, focused on the fundam ...

  8. 测试JDBCUtils的重用性

    package cn.itcast.jdbc;import cn.itcast.util.JDBCUtils;import java.sql.*;import java.util.Properties ...

  9. Linux内核启动流程(简介)

    1. vmlinux.lds 首先分析 Linux 内核的连接脚本文件 arch/arm/kernel/vmlinux.lds,通过链接脚本可以找到 Linux 内核的第一行程序是从哪里执行的: 第 ...

  10. Table.NestedJoin合并…Join(Power Query 之 M 语言)

    数据源: "销量表"和"部门表"两个查找表,每个表中都有"姓名"列 目标: 根据"姓名列"将"部门表" ...