Luigi Ambrosio, Giuseppe Da Prato, Andrea Mennucci, An Introduction to Measure Theory and Probability.

Chapter 1 Measure spaces

Index:

  • ring/algebras P2
  • \(\sigma\)-algebras P3
  • Borel \(\sigma\)-algebras P3
  • \(\sigma\)-additive P4
  • \((X,\mathscr{E},\mu)\) P7
  • finite, \(\sigma\)-finite P7
  • \(\mathscr{E}_{\mu}\), \(\mu-\)completion P8
  • \(\pi-\)systems P9
  • Dynkin-systems P10
  • Outer measure P11
  • \(\mathscr{S}:=\{(a,b]:a<b \in \mathbb{R}\}\) P12
  • Lebesgue measure \(\lambda\) P12

P9页的Caratheodory定理是在环\(\mathscr{E}\)的基础上建立的(实际上半环足以), 通过半环生成\(\sigma\)域(通过\(\sigma(\mathscr{K})=\mathscr{D}(\mathscr{K})\)). 通过\(\mathscr{E}\)构建可测集域(外测度, 扩张), 由于\(\sigma(\mathscr{E})\)也是可测集, 所以满足所需的可加性. 当定义在\(\mathscr{E}\)的测度\(\mu\)是\(\sigma\)有限的时候(或者存在一个分割), 这个扩张是唯一的.

Chapter 2 Integration

Index:

  • Inverse image \(\varphi^{-1}(I)\) P23
  • \((\mathscr{E}, \mathscr{F})\)-measureable P23
  • canonical representation of \(\varphi\) P25
\[\varphi(x)=\sum_{k-1}^n a_k 1_{A_k}, A_k = \varphi^{-1}(\{a_k\}).
\]
  • repartition function P28
  • archimedean integral P30
  • \(\mu\)-integrable P32
  • \(\mu\)-uniformly integrable P37

什么是可测函数, 以及什么是\(\mathscr{E}\)-可测函数是很重要的 (P24).

什么是\(\mu\)-integrable也是很重要的(在\(\mathscr{E}\)-可测函数定义的).

不同于我看到的一般的积分的定义, 这一节是从 repartition function 和 archimedean integral入手的, 特别是

\[\int_X \varphi d\mu := \int_{0}^{\infty} \mu(\{\varphi > t\}) \mathrm{d}t,
\]

的定义式非常之有趣.

Chapter 3 Spaces of integrable functions

Index:

  • \(L^p\),\(\mathcal{L}^p\) P44
  • equivalence class \(\tilde{\varphi}\)
  • Legendre transform P45
  • \(\mu\)-essentially bounded P45
  • Jensen inequality P45
  • \(C_b\) P54

首先需要注意的是, \(L^p\)空间是定义在\(\mu\)-integrable上的, 所以其针对值域为\((\mathbb{R},\mathscr{B}(\mathbb{R}))\).

Chapter 4 Hilbert spaces

Index:

  • Orthonormal system P63
  • Complete orthonormal system P64
  • Separable P64
  • pre-Hilbert space P57
  • Hilbert space (complete) P58

投影定理, 子空间或者凸闭集(条件和结论需要调整).

Chapter 5 Fourier series

Index:

  • "Heaviside" function P71
  • totally convergent P75

Chapter 6 Operations on measures

Index:

  • Measureable rectangle P79
  • sections, \(E_x,E^y\) P79
  • dimensional constant \(w_n=\mathcal{L}^n(B(0,1))\) p83
  • \(\delta\)-box P84
  • cylindrical set P86
  • concentrated set P92
  • singular measures P92
  • total variation P97
  • stieltjes integral P103
  • weak convergence P103
  • Tightness of measures P104
  • Fourier transform P108

这一章很重要!

Part1: Fubini-Tonelli

Part2: Lebesgue分解定理P92

Part3: Signed measures

Part4: \(F(x):= \mu((-\infty,x])\), P102, 弱收敛 \(\lim_{h\rightarrow \infty}\mu_h(-\infty, x]=\mu((-\infty, x])\) (除去可数多个点)

Part5: Fourier transform, 以及测度的Fourier transform (后面概率的表示函数有用), Levy定理P112.

Chapter 7 The fundamental theorem of the integral calculus

Index:

  • density points, rarefaction points P121
  • Heaviside function P121
  • Cantor-Vitali function P121
  • total variation P116
\[f(x)=f(a)+\int_a^x g(t)\mathrm{d}t,
\]
\[\lim_{r\downarrow0} \frac{1}{\omega_n r^n} \int_{B_r(x)} |f(y)-f(x)|\mathrm{d}y=0.
\]

Chapter 8 Measurable transformations

Index:

  • differential P123
  • Jacobian determinant P125
  • diffeomorphism P125
  • critical set \(C_F\) P125
\[F_\# \mu(I) := \mu(F^{-1}(I))
\]

有一个问题就是,我看其理论都是限制在非负函数上的, 但是个人感觉直接推广到可测函数上.

需要用到逆函数定理, 很有意思.

\[\int_{F(U)} \varphi(y) \mathrm{d}y = \int_{U} \varphi(F(x)) |JF|(x)\mathrm{d}x.
\]

Chapter 9 General concepts of Probability

Index:

  • elementary event P131
  • laws P131
  • Random variable P133
  • binomial law P138
  • Characteristic function P139

注意:

\[\mathbb{E}_{\mathbb{P}}(X):= \int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega),
\]

是限制在\(\mathbb{P}\)-integrable之上的.

Chapter 10 Conditional probability and independece

Index:

  • Independece of two families P147
  • \(\sigma\)-algebra generated by a random variable P147
  • Independence of two random variables P147
  • Independence of familes \(\mathscr{A}_i\) P149
  • \(\sigma(X):= \{\{X \in A\}:A \in \mathscr{E}\}\) P149
  • \(\sigma(\{X\}_{i \in I})\) P152
  • independent and identically distributed P155

由条件概率衍生到独立性, 随机变量的独立性有几个等价条件P147, P150.

需要区分联合分布的概率和\(\mu\times v\)的区别 (当独立时才等价).

Chapter 11 Convergence of random variables

测度 概率
一致收敛 一致收敛
几乎一致收敛 几乎一致收敛
几乎处处收敛 几乎处处收敛
依测度收敛 依概率收敛
\(L^p\)收敛 \(\lim_{n\rightarrow \infty}\mathbb{E}(\cdot)^p=0\)
弱收敛 依分布收敛

(几乎)一致收敛可以得到几乎处处和依测度收敛.

几乎处处在测度有限的情况下可以推几乎一致收敛, 从而得到依测度收敛.

依测度收敛必存在一个几乎处出收敛的子列.

\(L^p\)收敛一定能够有依测度收敛.

特别地, 依概率收敛有依分布收敛, 只有当依分布收敛到常数\(c\)的时候, 才能推依概率收敛到\(c\)(对应的有限测度).

Chapter 12 Sequences of independent variables

Index:

  • terminal \(\sigma\)-algerba \(\cap_{n} \mathscr{B}_n\) P172
  • empirical distribution function P180

Kolmogorov's dichotomy P173 很有趣.

大数定律再到中心极限定理.

Chapter 13 Stationary sequences and elements of ergodic theory

Index:

  • stationary sequences P186
  • measure-preserving transformation P188
  • T-invariant P189
  • Ergodic maps P189
  • conjugate maps P190

平稳序列的定义需要注意, 另外一些理论有趣却渐渐脱离了掌控, 有点摸不着头脑.

An Introduction to Measure Theory and Probability的更多相关文章

  1. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  2. Study notes for Discrete Probability Distribution

    The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...

  3. Better intuition for information theory

    Better intuition for information theory 2019-12-01 21:21:33 Source: https://www.blackhc.net/blog/201 ...

  4. 图论介绍(Graph Theory)

    1 图论概述 1.1 发展历史 第一阶段: 1736:欧拉发表首篇关于图论的文章,研究了哥尼斯堡七桥问题,被称为图论之父 1750:提出了拓扑学的第一个定理,多面体欧拉公式:V-E+F=2 第二阶段( ...

  5. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

  6. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  7. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

  8. (转) Read-through: Wasserstein GAN

    Sorta Insightful Reviews Projects Archive Research About  In a world where everyone has opinions, on ...

  9. [ML] I'm back for Machine Learning

    Hi, Long time no see. Briefly, I plan to step into this new area, data analysis. In the past few yea ...

随机推荐

  1. python web工程师跳巢攻略

    python web工程师跳巢攻略 流程 一面问基础 二面问项目 三面问设计(经验) web请求的流程 浏览器 负载均衡 web框架 业务逻辑 数据库缓存 后端技术栈 python语言基础 语言特点 ...

  2. 大数据学习day25------spark08-----1. 读取数据库的形式创建DataFrame 2. Parquet格式的数据源 3. Orc格式的数据源 4.spark_sql整合hive 5.在IDEA中编写spark程序(用来操作hive) 6. SQL风格和DSL风格以及RDD的形式计算连续登陆三天的用户

    1. 读取数据库的形式创建DataFrame DataFrameFromJDBC object DataFrameFromJDBC { def main(args: Array[String]): U ...

  3. Shell学习(三)——Shell条件控制和循环语句

    参考博客: [1]Shell脚本的条件控制和循环语句 一.条件控制语句 1.if语句 1.1语法格式: if [ expression ] then Statement(s) to be execut ...

  4. 监控Linux服务器网站状态的SHELL脚本

    1,监控httpd状态码的shell脚本代码. #!/bin/sh #site: www.jquerycn.cn # website[0]=www.jquerycn.cn/chuzu/' #网站1 m ...

  5. clickhouse安装数据导入及查询测试

    官网 https://clickhouse.tech/ quick start ubantu wget https://repo.yandex.ru/clickhouse/deb/lts/main/c ...

  6. 什么是javaScript闭包

    闭包是与函数有着紧密的关系,它是函数的代码在运行过程中的一个动态环境,是一个运行期的概念. 所谓闭包,是指词法表示包括不必计算的变量的函数.也就是说,该函数能够使用函数外定义的变量. 在程序语言中,所 ...

  7. 常用 HTTP 状态码

    下面是列举的我在项目中用到过的一些 HTTP 状态码,当然,在具体的使用中并不是用到的状态码越多越好,需要结合自己项目情况来选用适合自己的 HTTP 状态码.   HTTP 状态码 含义说明 200 ...

  8. JavaEE复习三

    Http协议是基于请求/响应模式.无状态的协议:所有请求时相互独立的.无连续的:服务器无法记住与识别用户. 对于简单的页面浏览或信息获取,http协议可以完全胜任:对于需要提供客户端和服务器端交互的网 ...

  9. Sentry 监控 - 私有 Docker Compose 部署与故障排除详解

    内容整理自官方开发文档 系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Map ...

  10. 阿里面试题: (a,b,c)组合索引, 查询语句select...from...where a=.. and c=..走索引吗?

    面试官:(a,b,c)组合索引,查询语句select...from...where a=.. and c=..走索引吗应聘者: 最佳左前缀法,如果索引了多列,要遵守最左前缀法则,否则索引失效 按最左前 ...