Luigi Ambrosio, Giuseppe Da Prato, Andrea Mennucci, An Introduction to Measure Theory and Probability.

Chapter 1 Measure spaces

Index:

  • ring/algebras P2
  • \(\sigma\)-algebras P3
  • Borel \(\sigma\)-algebras P3
  • \(\sigma\)-additive P4
  • \((X,\mathscr{E},\mu)\) P7
  • finite, \(\sigma\)-finite P7
  • \(\mathscr{E}_{\mu}\), \(\mu-\)completion P8
  • \(\pi-\)systems P9
  • Dynkin-systems P10
  • Outer measure P11
  • \(\mathscr{S}:=\{(a,b]:a<b \in \mathbb{R}\}\) P12
  • Lebesgue measure \(\lambda\) P12

P9页的Caratheodory定理是在环\(\mathscr{E}\)的基础上建立的(实际上半环足以), 通过半环生成\(\sigma\)域(通过\(\sigma(\mathscr{K})=\mathscr{D}(\mathscr{K})\)). 通过\(\mathscr{E}\)构建可测集域(外测度, 扩张), 由于\(\sigma(\mathscr{E})\)也是可测集, 所以满足所需的可加性. 当定义在\(\mathscr{E}\)的测度\(\mu\)是\(\sigma\)有限的时候(或者存在一个分割), 这个扩张是唯一的.

Chapter 2 Integration

Index:

  • Inverse image \(\varphi^{-1}(I)\) P23
  • \((\mathscr{E}, \mathscr{F})\)-measureable P23
  • canonical representation of \(\varphi\) P25
\[\varphi(x)=\sum_{k-1}^n a_k 1_{A_k}, A_k = \varphi^{-1}(\{a_k\}).
\]
  • repartition function P28
  • archimedean integral P30
  • \(\mu\)-integrable P32
  • \(\mu\)-uniformly integrable P37

什么是可测函数, 以及什么是\(\mathscr{E}\)-可测函数是很重要的 (P24).

什么是\(\mu\)-integrable也是很重要的(在\(\mathscr{E}\)-可测函数定义的).

不同于我看到的一般的积分的定义, 这一节是从 repartition function 和 archimedean integral入手的, 特别是

\[\int_X \varphi d\mu := \int_{0}^{\infty} \mu(\{\varphi > t\}) \mathrm{d}t,
\]

的定义式非常之有趣.

Chapter 3 Spaces of integrable functions

Index:

  • \(L^p\),\(\mathcal{L}^p\) P44
  • equivalence class \(\tilde{\varphi}\)
  • Legendre transform P45
  • \(\mu\)-essentially bounded P45
  • Jensen inequality P45
  • \(C_b\) P54

首先需要注意的是, \(L^p\)空间是定义在\(\mu\)-integrable上的, 所以其针对值域为\((\mathbb{R},\mathscr{B}(\mathbb{R}))\).

Chapter 4 Hilbert spaces

Index:

  • Orthonormal system P63
  • Complete orthonormal system P64
  • Separable P64
  • pre-Hilbert space P57
  • Hilbert space (complete) P58

投影定理, 子空间或者凸闭集(条件和结论需要调整).

Chapter 5 Fourier series

Index:

  • "Heaviside" function P71
  • totally convergent P75

Chapter 6 Operations on measures

Index:

  • Measureable rectangle P79
  • sections, \(E_x,E^y\) P79
  • dimensional constant \(w_n=\mathcal{L}^n(B(0,1))\) p83
  • \(\delta\)-box P84
  • cylindrical set P86
  • concentrated set P92
  • singular measures P92
  • total variation P97
  • stieltjes integral P103
  • weak convergence P103
  • Tightness of measures P104
  • Fourier transform P108

这一章很重要!

Part1: Fubini-Tonelli

Part2: Lebesgue分解定理P92

Part3: Signed measures

Part4: \(F(x):= \mu((-\infty,x])\), P102, 弱收敛 \(\lim_{h\rightarrow \infty}\mu_h(-\infty, x]=\mu((-\infty, x])\) (除去可数多个点)

Part5: Fourier transform, 以及测度的Fourier transform (后面概率的表示函数有用), Levy定理P112.

Chapter 7 The fundamental theorem of the integral calculus

Index:

  • density points, rarefaction points P121
  • Heaviside function P121
  • Cantor-Vitali function P121
  • total variation P116
\[f(x)=f(a)+\int_a^x g(t)\mathrm{d}t,
\]
\[\lim_{r\downarrow0} \frac{1}{\omega_n r^n} \int_{B_r(x)} |f(y)-f(x)|\mathrm{d}y=0.
\]

Chapter 8 Measurable transformations

Index:

  • differential P123
  • Jacobian determinant P125
  • diffeomorphism P125
  • critical set \(C_F\) P125
\[F_\# \mu(I) := \mu(F^{-1}(I))
\]

有一个问题就是,我看其理论都是限制在非负函数上的, 但是个人感觉直接推广到可测函数上.

需要用到逆函数定理, 很有意思.

\[\int_{F(U)} \varphi(y) \mathrm{d}y = \int_{U} \varphi(F(x)) |JF|(x)\mathrm{d}x.
\]

Chapter 9 General concepts of Probability

Index:

  • elementary event P131
  • laws P131
  • Random variable P133
  • binomial law P138
  • Characteristic function P139

注意:

\[\mathbb{E}_{\mathbb{P}}(X):= \int_{\Omega} X(\omega) \mathrm{d} \mathbb{P}(\omega),
\]

是限制在\(\mathbb{P}\)-integrable之上的.

Chapter 10 Conditional probability and independece

Index:

  • Independece of two families P147
  • \(\sigma\)-algebra generated by a random variable P147
  • Independence of two random variables P147
  • Independence of familes \(\mathscr{A}_i\) P149
  • \(\sigma(X):= \{\{X \in A\}:A \in \mathscr{E}\}\) P149
  • \(\sigma(\{X\}_{i \in I})\) P152
  • independent and identically distributed P155

由条件概率衍生到独立性, 随机变量的独立性有几个等价条件P147, P150.

需要区分联合分布的概率和\(\mu\times v\)的区别 (当独立时才等价).

Chapter 11 Convergence of random variables

测度 概率
一致收敛 一致收敛
几乎一致收敛 几乎一致收敛
几乎处处收敛 几乎处处收敛
依测度收敛 依概率收敛
\(L^p\)收敛 \(\lim_{n\rightarrow \infty}\mathbb{E}(\cdot)^p=0\)
弱收敛 依分布收敛

(几乎)一致收敛可以得到几乎处处和依测度收敛.

几乎处处在测度有限的情况下可以推几乎一致收敛, 从而得到依测度收敛.

依测度收敛必存在一个几乎处出收敛的子列.

\(L^p\)收敛一定能够有依测度收敛.

特别地, 依概率收敛有依分布收敛, 只有当依分布收敛到常数\(c\)的时候, 才能推依概率收敛到\(c\)(对应的有限测度).

Chapter 12 Sequences of independent variables

Index:

  • terminal \(\sigma\)-algerba \(\cap_{n} \mathscr{B}_n\) P172
  • empirical distribution function P180

Kolmogorov's dichotomy P173 很有趣.

大数定律再到中心极限定理.

Chapter 13 Stationary sequences and elements of ergodic theory

Index:

  • stationary sequences P186
  • measure-preserving transformation P188
  • T-invariant P189
  • Ergodic maps P189
  • conjugate maps P190

平稳序列的定义需要注意, 另外一些理论有趣却渐渐脱离了掌控, 有点摸不着头脑.

An Introduction to Measure Theory and Probability的更多相关文章

  1. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  2. Study notes for Discrete Probability Distribution

    The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...

  3. Better intuition for information theory

    Better intuition for information theory 2019-12-01 21:21:33 Source: https://www.blackhc.net/blog/201 ...

  4. 图论介绍(Graph Theory)

    1 图论概述 1.1 发展历史 第一阶段: 1736:欧拉发表首篇关于图论的文章,研究了哥尼斯堡七桥问题,被称为图论之父 1750:提出了拓扑学的第一个定理,多面体欧拉公式:V-E+F=2 第二阶段( ...

  5. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

  6. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  7. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

  8. (转) Read-through: Wasserstein GAN

    Sorta Insightful Reviews Projects Archive Research About  In a world where everyone has opinions, on ...

  9. [ML] I'm back for Machine Learning

    Hi, Long time no see. Briefly, I plan to step into this new area, data analysis. In the past few yea ...

随机推荐

  1. Java【常用的日期操作】

    目录 1.设置时间 2.获取年月日时分秒 3.通过运算获取时间 4.和Date类转换 5.格式化时间 6.新功能LocalDate:当前日期格式化 7.示例 java.util.Calendar 类是 ...

  2. 零基础学习java------day18------properties集合,多线程(线程和进程,多线程的实现,线程中的方法,线程的声明周期,线程安全问题,wait/notify.notifyAll,死锁,线程池),

    1.Properties集合 1.1 概述: Properties类表示了一个持久的属性集.Properties可保存在流中或从流中加载.属性列表中每个键及其对应值都是一个字符串 一个属性列表可包含另 ...

  3. 图形学3D渲染管线学习

    图形学3D渲染管线 DX和OpenGL左右手坐标系不同,会有一些差距,得出的矩阵会不一样; OpenGL的投影平面不是视景体的近截面: 顶点(vertexs) 顶点坐标,颜色,法线,纹理坐标(UV), ...

  4. jenkins之代码部署回滚脚本

    #!/bin/bash DATE=`date +%Y-%m-%d_%H-%M-%S` METHOD=$1 BRANCH=$2 GROUP_LIST=$3 function IP_list(){ if ...

  5. Spring Boot中使用Servlet与Filter

    在Spring Boot中使用Servlet,根据Servlet注册方式的不同,有两种使用方式.若使用的是Servlet3.0+版本,则两种方式均可使用:若使用的是Servlet2.5版本,则只能使用 ...

  6. ClassLoader.loadClass()与Class.forName()的区别《 转》

    ClassLoader.loadClass()与Class.forName()区别: ClassLoader.loadClass()与Class.forName()大家都知道是反射用来构造类的方法,但 ...

  7. Windows内存管理-分段

    0x01原因 分段的产生原属于安全问题. 一个程序可以自由的访问不属于它的内存位置,甚至可以对那些内容进行修改.这也导致安全问题 促使一种内存隔离的手段 分段的产生. 0x02分段原理 处理器要求在加 ...

  8. VUE3 之 生命周期函数

    1. 概述 老话说的好:天生我材必有用,千金散尽还复来. 言归正传,今天我们来聊一下 VUE 的生命周期函数. 所谓生命周期函数,就是在某一条件下被自动触发的函数. 2. VUE3 生命周期函数介绍 ...

  9. Nginx配置访问黑名单

    目录 一.简介 二.脚本 一.简介 有的时候需要将某些大访问量的ip加入到黑名单中 二.脚本 1.脚本内容为,检测本地并发访问超过15并且是ip地址,则加入nginx黑名单中.其中的53a是deny行 ...

  10. 从零开始写一个前端脚手架四、初始化进程提示(chalk)

    我们之前说过bin里面的index.js文件是作为入口文件存在的.实际上的初始化内容在.action里面操作的,为了方便管理,我们把实际操作的代码抽出来放一块儿管理 创建指令文件 在根目录创建一个co ...