An Introduction to Measure Theory and Probability
- Chapter 1 Measure spaces
- Chapter 2 Integration
- Chapter 3 Spaces of integrable functions
- Chapter 4 Hilbert spaces
- Chapter 5 Fourier series
- Chapter 6 Operations on measures
- Chapter 7 The fundamental theorem of the integral calculus
- Chapter 8 Measurable transformations
- Chapter 9 General concepts of Probability
- Chapter 10 Conditional probability and independece
- Chapter 11 Convergence of random variables
- Chapter 12 Sequences of independent variables
- Chapter 13 Stationary sequences and elements of ergodic theory
Luigi Ambrosio, Giuseppe Da Prato, Andrea Mennucci, An Introduction to Measure Theory and Probability.
Chapter 1 Measure spaces
Index:
- ring/algebras P2
- \(\sigma\)-algebras P3
- Borel \(\sigma\)-algebras P3
- \(\sigma\)-additive P4
- \((X,\mathscr{E},\mu)\) P7
- finite, \(\sigma\)-finite P7
- \(\mathscr{E}_{\mu}\), \(\mu-\)completion P8
- \(\pi-\)systems P9
- Dynkin-systems P10
- Outer measure P11
- \(\mathscr{S}:=\{(a,b]:a<b \in \mathbb{R}\}\) P12
- Lebesgue measure \(\lambda\) P12
P9页的Caratheodory定理是在环\(\mathscr{E}\)的基础上建立的(实际上半环足以), 通过半环生成\(\sigma\)域(通过\(\sigma(\mathscr{K})=\mathscr{D}(\mathscr{K})\)). 通过\(\mathscr{E}\)构建可测集域(外测度, 扩张), 由于\(\sigma(\mathscr{E})\)也是可测集, 所以满足所需的可加性. 当定义在\(\mathscr{E}\)的测度\(\mu\)是\(\sigma\)有限的时候(或者存在一个分割), 这个扩张是唯一的.
Chapter 2 Integration
Index:
- Inverse image \(\varphi^{-1}(I)\) P23
- \((\mathscr{E}, \mathscr{F})\)-measureable P23
- canonical representation of \(\varphi\) P25
\]
- repartition function P28
- archimedean integral P30
- \(\mu\)-integrable P32
- \(\mu\)-uniformly integrable P37
什么是可测函数, 以及什么是\(\mathscr{E}\)-可测函数是很重要的 (P24).
什么是\(\mu\)-integrable也是很重要的(在\(\mathscr{E}\)-可测函数定义的).
不同于我看到的一般的积分的定义, 这一节是从 repartition function 和 archimedean integral入手的, 特别是
\]
的定义式非常之有趣.
Chapter 3 Spaces of integrable functions
Index:
- \(L^p\),\(\mathcal{L}^p\) P44
- equivalence class \(\tilde{\varphi}\)
- Legendre transform P45
- \(\mu\)-essentially bounded P45
- Jensen inequality P45
- \(C_b\) P54
首先需要注意的是, \(L^p\)空间是定义在\(\mu\)-integrable上的, 所以其针对值域为\((\mathbb{R},\mathscr{B}(\mathbb{R}))\).
Chapter 4 Hilbert spaces
Index:
- Orthonormal system P63
- Complete orthonormal system P64
- Separable P64
- pre-Hilbert space P57
- Hilbert space (complete) P58
投影定理, 子空间或者凸闭集(条件和结论需要调整).
Chapter 5 Fourier series
Index:
- "Heaviside" function P71
- totally convergent P75
Chapter 6 Operations on measures
Index:
- Measureable rectangle P79
- sections, \(E_x,E^y\) P79
- dimensional constant \(w_n=\mathcal{L}^n(B(0,1))\) p83
- \(\delta\)-box P84
- cylindrical set P86
- concentrated set P92
- singular measures P92
- total variation P97
- stieltjes integral P103
- weak convergence P103
- Tightness of measures P104
- Fourier transform P108
这一章很重要!
Part1: Fubini-Tonelli
Part2: Lebesgue分解定理P92
Part3: Signed measures
Part4: \(F(x):= \mu((-\infty,x])\), P102, 弱收敛 \(\lim_{h\rightarrow \infty}\mu_h(-\infty, x]=\mu((-\infty, x])\) (除去可数多个点)
Part5: Fourier transform, 以及测度的Fourier transform (后面概率的表示函数有用), Levy定理P112.
Chapter 7 The fundamental theorem of the integral calculus
Index:
- density points, rarefaction points P121
- Heaviside function P121
- Cantor-Vitali function P121
- total variation P116
\]
\]
Chapter 8 Measurable transformations
Index:
- differential P123
- Jacobian determinant P125
- diffeomorphism P125
- critical set \(C_F\) P125
\]
有一个问题就是,我看其理论都是限制在非负函数上的, 但是个人感觉直接推广到可测函数上.
需要用到逆函数定理, 很有意思.
\]
Chapter 9 General concepts of Probability
Index:
- elementary event P131
- laws P131
- Random variable P133
- binomial law P138
- Characteristic function P139
注意:
\]
是限制在\(\mathbb{P}\)-integrable之上的.
Chapter 10 Conditional probability and independece
Index:
- Independece of two families P147
- \(\sigma\)-algebra generated by a random variable P147
- Independence of two random variables P147
- Independence of familes \(\mathscr{A}_i\) P149
- \(\sigma(X):= \{\{X \in A\}:A \in \mathscr{E}\}\) P149
- \(\sigma(\{X\}_{i \in I})\) P152
- independent and identically distributed P155
由条件概率衍生到独立性, 随机变量的独立性有几个等价条件P147, P150.
需要区分联合分布的概率和\(\mu\times v\)的区别 (当独立时才等价).
Chapter 11 Convergence of random variables
测度 | 概率 |
---|---|
一致收敛 | 一致收敛 |
几乎一致收敛 | 几乎一致收敛 |
几乎处处收敛 | 几乎处处收敛 |
依测度收敛 | 依概率收敛 |
\(L^p\)收敛 | \(\lim_{n\rightarrow \infty}\mathbb{E}(\cdot)^p=0\) |
弱收敛 | 依分布收敛 |
(几乎)一致收敛可以得到几乎处处和依测度收敛.
几乎处处在测度有限的情况下可以推几乎一致收敛, 从而得到依测度收敛.
依测度收敛必存在一个几乎处出收敛的子列.
\(L^p\)收敛一定能够有依测度收敛.
特别地, 依概率收敛有依分布收敛, 只有当依分布收敛到常数\(c\)的时候, 才能推依概率收敛到\(c\)(对应的有限测度).
Chapter 12 Sequences of independent variables
Index:
- terminal \(\sigma\)-algerba \(\cap_{n} \mathscr{B}_n\) P172
- empirical distribution function P180
Kolmogorov's dichotomy P173 很有趣.
大数定律再到中心极限定理.
Chapter 13 Stationary sequences and elements of ergodic theory
Index:
- stationary sequences P186
- measure-preserving transformation P188
- T-invariant P189
- Ergodic maps P189
- conjugate maps P190
平稳序列的定义需要注意, 另外一些理论有趣却渐渐脱离了掌控, 有点摸不着头脑.
An Introduction to Measure Theory and Probability的更多相关文章
- Introduction to graph theory 图论/脑网络基础
Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...
- Study notes for Discrete Probability Distribution
The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...
- Better intuition for information theory
Better intuition for information theory 2019-12-01 21:21:33 Source: https://www.blackhc.net/blog/201 ...
- 图论介绍(Graph Theory)
1 图论概述 1.1 发展历史 第一阶段: 1736:欧拉发表首篇关于图论的文章,研究了哥尼斯堡七桥问题,被称为图论之父 1750:提出了拓扑学的第一个定理,多面体欧拉公式:V-E+F=2 第二阶段( ...
- FAQ: Machine Learning: What and How
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- (转)Awesome Courses
Awesome Courses Introduction There is a lot of hidden treasure lying within university pages scatte ...
- (转) Read-through: Wasserstein GAN
Sorta Insightful Reviews Projects Archive Research About In a world where everyone has opinions, on ...
- [ML] I'm back for Machine Learning
Hi, Long time no see. Briefly, I plan to step into this new area, data analysis. In the past few yea ...
随机推荐
- Flink(一)【基础入门,Yarn、Local模式】
目录 一.介绍 Spark | Flink 二.快速入门:WC案例 pom依赖 批处理 流处理 有界流 无界流(重要) 三.Yarn模式部署 安装 打包测试,命令行(无界流) Flink on Yar ...
- 【Android】安装插件 + 改变文字大小、颜色 + 隐藏代码区块的直线
安装插件 可以在搜寻框里面填入关键字搜寻,具体的插件,网上有很多介绍了 改变文字大小.颜色 隐藏代码区块的直线
- Linux之sftp服务
Linux之sftp服务 一.sftp介绍转自:[1]Linux如何开启SFTP https://www.cnblogs.com/xuliangxing/p/7120205.htmlSFTP是Secu ...
- Spring.DM web开发环境搭建
作为一个初学者来说,搭建好Spring.DM 的web开发环境还是有些麻烦的.我就遇到了N多麻烦,走了很多弯路.本文介绍了2种比较简单的搭建Spring.DM OSGi web开发环境的搭建. 第 ...
- Vue中的8种组件通信方式
Vue是数据驱动视图更新的框架,所以对于vue来说组件间的数据通信非常重要. 常见使用场景可以分为三类: 父子组件通信: props / $emit $parent / $children provi ...
- 基于jar的Spring Boot工程
一.Spring Boot简介 Spring Boot是由Pivotal[ˈpɪvətl]团队(一家做大数据的公司)提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架 ...
- 【Java基础】JAVA中优先队列详解
总体介绍 优先队列的作用是能保证每次取出的元素都是队列中权值最小的(Java的优先队列每次取最小元素,C++的优先队列每次取最大元素).这里牵涉到了大小关系,元素大小的评判可以通过元素本身的自然顺序( ...
- 设计风格之REST
一.简介 REST简介 REST 是英文 representational state transfer(表象性状态转变)或者表述性状态转 移;Rest 是 web 服务的一种架构风格;使用 HTTP ...
- greeting-150
拿到程序例行检查,可以看出程序是32位的程序 将程序放入ida中进入主函数查看 但是我们将程序运行一次后发现程序还运行了nao的程序 说明程序在中间还引用了nao函数,通过代码审计我们可以很直接的看到 ...
- Java实现HttpGet和HttpPost请求
maven引入JSON处理jar <dependency> <groupId>com.alibaba</groupId> <artifactId>fas ...