题目链接

大意

给你\(N\)个事件,解决每个事件所需的时间有\(1/2\)的概率为\(t[i]\),\(1/2\)的概率为\((t[i]+1)\),给你总时间\(T\),在\(T\)时间内按顺序解决事件,求能解决的事件的期望个数。

(答案对\(10^9+7\)取模)

(\(N\le 2\cdot 10^5,1\le t[i]\le 10^9,1\le T\le 2\cdot 10^{14}\))

思路

考虑如何求期望:

我们设\(P[i]\)表示第\(i\)件物品能被做完的概率。

则有$$Ans=\sum_{i=1}^{N}P[i]$$

则问题就转化为如何求\(P[i]\)。

我们设\(Sum[i]\)表示前\(i\)件事的最小时间和,即\(Sum[i]=\sum_{i=1}^{N}t[i]\)。

①:对于\(Sum[i]+i\le T\)的情况:

则第\(i\)件事一定会被做完,故\(P[i]=1\)。

②:对于\(Sum[i]\le T<Sum[i]+i\)的情况:

我们设\(Dp[i][j]\)表示前\(i\)件事有\(j\)件事时间多做了\(1\)个单位的概率,即多做了\(j\)个时间单位,

则对于每个\(Dp[i][j]\),若有\(Sum[i]+j<=T\),则可以对\(P[i]\)产生\(Dp[i][j]\)的贡献。

考虑如何求\(Dp[i][j]\):

将这些事件按是否多做\(1\)个时间单位分类,

若完成时间为\(t[i]\),则类型为\(0\),

若完成时间为\(t[i]+1\),则类型为\(1\),

则可以将这些事件的状态表示为一个\(01\)串。

则总状态数就为\(2^i\),从\(i\)个数中选\(j\)个让其状态为\(1\)的个数就为\(C(i,j)\),

则\(Dp[i][j]=\frac{C(i,j)}{2^i}\)。

对于每个\(P[i]\),

我们倘若每次都去枚举有哪些\(j\)是可以满足\(Sum[i]+j<=T\)的话,很明显会超时。

则考虑如何从上一次\((P[i-1])\)所需的状态数转到\(P[i]\)的状态数。

(注:第一次进入情况②的时候可以暴力找到状态)

考虑如何快速地从\(P[i-1]\)转移到\(P[i]\)的状态:

我们设上一次需要的\(C\)是从\(C(i-1,0)\)到\(C(i-1,Sum_K)\),

设上一次的\(P[i-1]=\frac{Sum_N}{2^{i-1}}\),则有\(Sum_N=\sum_{j=0}^{Sum_K}C(i-1,j)\)。

根据$$C(i,j)=C(i-1,j)+C(i-1,j-1)$$

则有$$\sum_{j=1}{Sum_K}C(i,j)=\sum_{j=1}{Sum_K}(C(i-1,j)+C(i-1,j-1))$$

则$$\sum_{j=1}{Sum_K}C(i,j)=(2*\sum_{j=0}{Sum_K}C(i-1,j))-C(i-1,0)-C(i-1,Sum_K)$$

然后,对于这次的\(Sum_N\)来说,

\(Sum_N=\sum_{j=1}^{Sum_K}C(i,j)+C(i,0)-\sum_{j=T-Sum[i]+1}^{Sum_K}C(i,j)\)

\(Sum_N=(2*\sum_{j=0}^{Sum_K}C(i-1,j))-C(i-1,Sum_K)-\sum_{j=T-Sum[i]+1}^{Sum_K}C(i,j)\)

\(Sum_N=Sum_N*2-C(i-1,Sum_K)-\sum_{j=T-Sum[i]+1}^{Sum_K}C(i,j)\)

则这一次的\(Sum_N\)就可以从上一次的\(Sum_N\)转移过来。

显然这一次的\(Sum_K=T-Sum[i]\)。

则\(Sum_K\)会随着\(i\)的增大而减小,

而进入情况②的条件是:\(Sum[i]<=T<Sum[i]+i\),

即求解所有的\(Sum_N\)的时间复杂度总计\(O(N)\)。

③:\(Sum[i]>T\)时

则事件\(i\)一定不会被做完,即\(P[i]=0\)。

综上,\(Ans\)得解。

代码

#include<cstdio>
#include<algorithm>
using namespace std;
#define LL long long
const int ON=200000;
const int MAXN=200005;
const long long ONE=1;
const int MOD=1000000007;
int N,t[MAXN];
long long F[MAXN];
long long T,Sum[MAXN],Ans;
long long f[MAXN]={1},fe[MAXN]={1};
long long O[MAXN]={1},Oe[MAXN]={1};
long long Sum_N,Sum_K;
LL quick_Pow(LL x,LL y){
if(y==0)return 1;
if(y==1)return x;
if(y%2)return (x*quick_Pow((x*x)%MOD,y/2))%MOD;
return quick_Pow((x*x)%MOD,y/2);
}
void Prepare(){
for(int i=1;i<=ON;i++){
f[i]=(f[i-1]*i)%MOD;
fe[i]=quick_Pow(f[i],MOD-2);
O[i]=(O[i-1]*2)%MOD;
Oe[i]=quick_Pow(O[i],MOD-2);
}
}
long long C(long long x,long long y){
if(y>x)return 0;
return (f[x]*((fe[y]*fe[x-y])%MOD))%MOD;
}
long long work(long long n,long long k){
if(Sum_K==0){
for(int i=0;i<=k;i++)
Sum_N=(Sum_N+C(n,i))%MOD;
}else{
Sum_N=(Sum_N*2-C(n-1,Sum_K)+MOD)%MOD;
for(int i=Sum_K;i>k;i--)
Sum_N=(Sum_N-C(n,i)+MOD)%MOD;
}
Sum_K=k;
return Sum_N;
}
int main(){
Prepare();
scanf("%d%lld",&N,&T);
for(int i=1;i<=N;i++){
scanf("%d",&t[i]);
Sum[i]=Sum[i-1]+t[i];
}
for(int i=1;i<=N;i++){
if(Sum[i]>T)break;
if(Sum[i]+i<=T){
F[i]=1;
continue;
}
F[i]=(work(i,T-Sum[i])*Oe[i])%MOD;
}
for(int i=1;i<=N;i++)
Ans=(Ans+F[i])%MOD;
printf("%lld\n",Ans);
}

【CF1194F】Crossword Expert(数学 期望)的更多相关文章

  1. CF1194F Crossword Expert(数论,组合数学)

    不难的一题.不知道为什么能 $2500$…… 不过场上推错了一直不会优化…… 首先考虑 $f_i$ 表示恰好做完前 $i$ 道题的概率. 这样很难算.修改一下,$f_i$ 表示做完至少 $i$ 道题的 ...

  2. [BZOJ 3143][HNOI2013]游走(数学期望)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...

  3. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)

    题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...

  4. 数学期望和概率DP题目泛做(为了对应AD的课件)

    题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...

  5. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  6. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  7. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  8. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

  9. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

随机推荐

  1. ubuntu 升级node和npm 版本

    使用vue-cli 3 构建项目时会一直卡在拉取依赖不动,原因是node和npm版本过低,升级node版本即可 $ sudo npm cache clean -f $ sudo npm install ...

  2. Centos7 文件修改详情

    Centos常规修改信息 记录文件在系统中的意义 /etc/locale.conf ---修改字符集文件 /etc/profile ---修改环境变量

  3. 战争游戏(War Games 1983)剧情

    战争游戏 War Games(1983) 人工控制导弹发射 傍晚大雾,两值工作人员自驾一辆轿车到达监控俄罗斯核战争的防空基地,在门口出示工作证后进入基地,两工作人员和同事换班后,进入防空系统控制室开始 ...

  4. vue3.0+vite+ts项目搭建-axios封装(六)

    封装方式一 import axios from 'axios' import qs from 'qs' import { Toast } from 'vant' import Lockr from ' ...

  5. vue实现引用less,sass全局变量

    1.npm install sass-resources-loader --save-dev: 2.build/utils.js中,修改 function resolveResource(name) ...

  6. Android官方文档翻译 十 2.3Styling the Action Bar

    Styling the Action Bar 设计菜单栏的样式 This lesson teaches you to 这节课教给你 Use an Android Theme 使用一个Android主题 ...

  7. Solon Web 开发,五、数据访问、事务与缓存应用

    Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...

  8. Winfrom统一单例窗口

    //调用方式 var frm = new MyForm().Instance(); public static class ExFrm { static Dictionary<string, F ...

  9. 微服务架构 | 12.1 使用 Apache Dubbo 实现远程通信

    目录 前言 1. Dubbo 基础知识 1.1 Dubbo 是什么 1.2 Dubbo 的架构图 1.3 Spring Cloud 与 Dubbo 的区别 1.4 Dubbo 的特点 1.5 Dubb ...

  10. gin中的文件上传

    1. 单文件上传 package main import ( "fmt" "github.com/gin-gonic/gin" "log" ...