Harbour.Space Scholarship Contest 2021-2022 (Div. 1 + Div. 2) Editorial题解
A
略,发现只有当末尾为9时才满足条件..
B
简单模拟,注意数组大小!!!
C
简单模拟。
D
比较暴力的一个做法就是每次找一个开始匹配的起始点,然后每次不同时向后跳2就行了。
注意这里最后还要判断一下剩下的串的个数是不是偶数!!!复杂度应该是\(O(n^2)\)但水过了就是水过了...
E
好题!起码对我来说是这样的,学到了许多的知识...
首先我们先将所有的数字减1,将一个排列位置上的数和它的标号都减一。例如:\(n=4\),\(p[0]=0,p[1]=1,p[2]=2,p[3]=3.\)这是一个排列。或者打乱一下,\(p[0]=2,p[1]=3,p[2]=0,p[3]=1\),这也是一个排列,反正我们就是要将数和位置数都减一。为什么这样做呢,因为像这样的整体移动,往往和对n取模有关,例如当\(k=2\)时,数组变成\(p[0]=2,p[1]=3,p[2]=0,p[3]=1\),我们发现对于\(>=k+1\)的数下标为i的就变成了\(i-k\),这个很好想,毕竟他们就是从原来的数被迫向后推了\(k\)。对于前\(k\)个数我们找一下规律,\(p[0]=2=n-1-(k-1)=n-k,p[1]=3=n-k+1\),同理可推得\(p[i]=n-k+i,p[i]=i-k+n\),发现和\(i-k\)的形式就多了一个\(n\),怎么办,我们取模啊,于是就有了\(p[i]≡i-k\)(%n),也就是说对于一个k,我们就能知道了其序列应该满足上式。之后考率给定一个k我们怎么用最少的次数将它还原成目标数列\(b[i]\),一个做法就是用图论的知识,环图,我们将p[i]向b[i]连边。意思是在p[i]序列中p[i]要和b[i]交换。考虑这样做后整个图一定是若干个环,对于每个环我们要花费环中元素的个数-1的次数才能将环中的数都还原。这样之后我们总的还原次数就是n-环的个数。好了,结束了...
不对啊,难道我们要对每一个k都做一下上述找环的过程吗?这个过程不是\(O(n^2)\)的吗?
考虑题中给的\(m\leq \frac{n}{3}\)有何用意,我们考虑一个能够用m次交换就能成功的排列,那么其最多有2m个数是乱序的,那么也就是说这个排列最少有n-2m个数是在自己本来位置上的。我们可以用一个数组\(cnt_i\)表示\(k=i\)在自己正确的位置上的数的个数。
考虑\(k=0,1,...,n-1\)这n个排列是各不相同,也就是说对于\(k1!=k2,p_{k1}[i]!=p_{k2}[i]\)这样的话由于目标序列只有一个,所以每个位置只会在其中的一个k中是正确的,在其他的位置都不正确,即\(\sum{cnt_i}=n\)。这样的话我们只需要在目标序列上找到其对应正确位置的k值,之后我们只用检查满足要求的k值,等等这样的k值一共有多少个,\(\frac{n}{n-\frac{2n}{3}}\)那不是3吗?
也就是说说最多有3个k值需要我们去找环,放心食用.
F
未完待续...
Harbour.Space Scholarship Contest 2021-2022 (Div. 1 + Div. 2) Editorial题解的更多相关文章
- CF1553X Harbour.Space Scholarship Contest 2021-2022 (Div. 1 + Div. 2)
掉大分 E 对于一个序列,把它排回去的最小次数是 $\sum置换环大小-1=错位个数-置换环个数$ 注意到m小于等于n/3.那么最多修正2m个错位.正确位置的个数必须大于等于n/3才可能在m次内修正. ...
- Harbour.Space Scholarship Contest 2021-2022 题解
多好的上分机会啊,要是换个时间(指改在 NOI 之后)我说不定就能上 2500 了(做白日梦 ing) A 签到题不多说,显然只有末尾为 \(9\) 的数是 interesting 的,因此答案就是 ...
- KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解
KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...
- Lyft Level 5 Challenge 2018 - Final Round (Open Div. 2) (前三题题解)
这场比赛好毒瘤哇,看第四题好像是中国人出的,怕不是dllxl出的. 第四道什么鬼,互动题不说,花了四十五分钟看懂题目,都想砸电脑了.然后发现不会,互动题从来没做过. 不过这次新号上蓝名了(我才不告诉你 ...
- Codeforces Round #792 (Div. 1 + Div. 2) A-E
Codeforces Round #792 (Div. 1 + Div. 2) A-E A 题目 https://codeforces.com/contest/1684/problem/A 题解 思路 ...
- CF Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined)
1. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) B. Batch Sort 暴力枚举,水 1.题意:n*m的数组, ...
- xHTML+div布局:三个div,两边div宽度固定,中间div宽度自适应
xHTML+div经常考题:三个div,两边div宽度固定,中间div宽度自适应. 和大家分享一个实现方式: 1.html代码 <div class="dyleft"> ...
- getElementsByTagName("div")和$("div")区别
作者:zccst <body> <div class="selected">1</div> <div class="select ...
- 【codeforces】【比赛题解】#868 CF Round #438 (Div.1+Div.2)
这次是Div.1+Div.2,所以有7题. 因为时间较早,而且正好赶上训练,所以机房开黑做. 然而我们都只做了3题.:(. 链接. [A]声控解锁 题意: Arkady的宠物狗Mu-mu有一只手机.它 ...
随机推荐
- Ebiten-纯Golang开发的跨平台游戏引擎
Go语言不是让你玩的啊喂! 昨天跟好基友聊开发的事,他说他等着闲下来的时候就用PYGame写个像那个最近挺火的"文X游X"一样的游戏.(没收广告费啊!) 基友突然嘲笑我:" ...
- PHP的OpenSSL加密扩展学习(二):非对称加密
上篇文章,我们了解了关于对称和非对称加密的一些相关的理论知识,也学习了使用 OpenSSL 来进行对称加密的操作.今天,我们就更进一步,学习 OpenSSL 中的非对称加密是如何实现的. 生成私钥 通 ...
- 什么是云效 Projex,云效Projex企业级高效研发项目管理平台
云效项目协作Projects是一款企业级高效研发项目管理平台, 提供了快速实践的敏捷研发项目管理机制,提供对需求.迭代.缺陷各个维度的协同管理以及相关的统计报告,让研发团队高效协作.践行敏捷并持续交付 ...
- OC源码剖析对象的本质
1. 类的底层实现 先写一个 Person 类: @interface Person : NSObject @property (nonatomic, copy) NSString *p_name; ...
- javascript 分时函数 分批次添加DOM节点 timeChunk
创建1000个webqq的qq好友列表, 一个好友用一个节点来表示 * timeChunk var timeChunk = function(a, fn, sz, done) { var obj, t ...
- linux mint 18.1 安装备忘录
本次全新安装mint18.1,遇到一些问题,全部解决,怕日后忘记,再捣鼓琢磨,浪费时间,特记录在此: 一.楷体字体问题 安装完后的mint18.1,显示都是楷体,经请教薄荷论坛高手,可用以下办法解决: ...
- YbtOJ#903-染色方案【拉格朗日插值,NTT,分治】
正题 题目链接:https://www.ybtoj.com.cn/contest/115/problem/3 题目大意 两个长度为\(n+1\)的序列\(a,b\) \(a_i\)表示涂了\(i\)个 ...
- Python:PNG图像生成MP4
Python:PNG图像生成MP4 需求 需要将多张*.PNG图像,生成mp4格式的视频文件. 实现 利用Python中image库生成*.gif格式图像,但是图片未经压缩,文件体量较大. movie ...
- caffe.cpp解析
来自链接:http://blog.csdn.net/u014114990/article/details/47747025 主要讲解:GetBrewFunction()函数定义如下,其返回BrewFu ...
- VS2013编译报错——error LNK2001: 无法解析的外部符号 __imp_PathMatchSpecA E:\CaffeProgram\3train_mnist(p)\3train_mnist\gflags.lib(gflags.obj) 3train_mnist
解决方案来自http://blog.csdn.net/yang6464158/article/details/41743641 感谢感谢~~