CF755G-PolandBall and Many Other Balls【倍增FFT】
正题
题目链接:https://www.luogu.com.cn/problem/CF755G
题目大意
\(n\)个东西排成一排,每个组可以选择一个单独的物品或者两个连续的物品,一个物品不同同时在两个组里,但是可以不在组里。对于\(i\in[1,k]\)求分成\(i\)组的方案数。
\(1\leq n\leq 10^9,1\leq k<2^{15}\)
解题思路
有三种方法。
第一种是倍增\(FFT\),设\(f_{i,j}\)表示到第\(i\)个物品选了\(j\)组时的方案数,那么设\(F_n(x)=\sum_{i=0}^kf_{n,i}x^i\)。
考虑把这个\(F\)分成两半,然后考虑中间的选不选就是
\]
我们发现如果需要计算\(F_{2^k}\),那么我们就需要维护\(F_{2^{k-1}},F_{2^{k-1}-1},F_{2^{k-1}-2}\)这三个东西。
但是这三个东西也可以用来计算\(F_{2^k-1},F_{2^k-2}\),所以可以维护这三个东西就行倍增。
然后处理的时候同理维护一个\(F_{m}\)和\(F_{m-1}\)就好了。
时间复杂度\(O(n\log^2 n)\),有点卡常
...
第二种方法是直接组合数学推导。将这个序列提出若干段,每一段之间间隔为\(1\),那么只有最末尾的段能够长度为\(2\)的。
\]
瓶颈在于后面的\(\binom{k}{i}\),也就是要求前后没有重复,所以我们可以考虑允许重复的容斥
\]
\]
\]
就可以卷积了,时间复杂度\(O(n\log n)\)
...
第三种方法是特征方程,回到第一个方法的\(F_n(x)\),我们有
\]
\]
这是一个二次项的递推式,过程就不在论述了,用特征方程化简可以得到
\]
然后上全家桶就好了,时间复杂度也是\(O(n\log n)\)
这里的标程用的是第一种方法。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
const int N=1<<16,P=998244353;
int n,k,m,r[N],f[3][N],t[3][N],g[2][N];
void fm(int &x){x+=x>>31&P;}
int power(int x,int b){
int ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void NTT(int *f,int op){
for(int i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(int p=2;p<=n;p<<=1){
int tmp=power(3,(P-1)/p),len=p>>1;
if(op==-1)tmp=power(tmp,P-2);
for(int k=0;k<n;k+=p){
int buf=1;
for(int i=k,tt;i<(k|len);i++){
tt=1ll*buf*f[i|len]%P;
fm(f[i|len]=f[i]-tt);
fm(f[i]=f[i]+tt-P);
buf=1ll*buf*tmp%P;
}
}
}
if(op==-1){
int invn=power(n,P-2);
for(int i=0;i<n;i++)
f[i]=1ll*f[i]*invn%P;
}
return;
}
void print(int x)
{if(x>9)print(x/10);putchar(x%10+'0');return;}
signed main()
{
scanf("%d%d",&m,&k);k++;n=1;
while(n<(k*2))n<<=1;
for(int i=0;i<n;i++)
r[i]=(r[i>>1]>>1)|((i&1)?(n>>1):0);
f[0][0]=f[0][1]=f[1][0]=g[0][0]=1;
for(int d=1;d<=m;d<<=1){
if(m&d){
for(int j=0;j<3;j++){
for(int i=0;i<n;i++)
t[j][i]=(i<k)?f[j][i]:0;
NTT(t[j],1);
}
NTT(g[0],1);NTT(g[1],1);
for(int i=0;i<n;i++){
int b0=g[0][i],b1=g[1][i];
g[0][i]=1ll*b0*t[0][i]%P;
g[1][i]=1ll*b0*t[1][i]%P;
t[0][i]=1ll*t[1][i]*b1%P;
t[1][i]=1ll*t[2][i]*b1%P;
}
NTT(g[0],-1);NTT(g[1],-1);
NTT(t[0],-1);NTT(t[1],-1);
for(int i=0;i<k-1;i++)
(g[0][i+1]+=t[0][i])%=P,
(g[1][i+1]+=t[1][i])%=P;
for(int i=k;i<n;i++)g[0][i]=g[1][i]=0;
}
if(d*2>m)break;
for(int j=0;j<3;j++){
for(int i=0;i<n;i++)
t[j][i]=(i<k)?f[j][i]:0;
NTT(t[j],1);
}
for(int i=0;i<n;i++){
f[0][i]=1ll*t[0][i]*t[0][i]%P;
f[1][i]=1ll*t[1][i]*t[0][i]%P;
f[2][i]=1ll*t[1][i]*t[1][i]%P;
t[0][i]=1ll*t[1][i]*t[1][i]%P;
t[1][i]=1ll*t[1][i]*t[2][i]%P;
t[2][i]=1ll*t[2][i]*t[2][i]%P;
}
for(int j=0;j<3;j++)
NTT(f[j],-1),NTT(t[j],-1);
for(int i=0;i<k-1;i++)
(f[0][i+1]+=t[0][i])%P,
(f[1][i+1]+=t[1][i])%P,
(f[2][i+1]+=t[2][i])%P;
for(int i=k;i<n;i++)f[0][i]=f[1][i]=f[2][i]=0;
}
for(int i=1;i<k;i++)
print(g[0][i]),putchar(' ');
return 0;
}
CF755G-PolandBall and Many Other Balls【倍增FFT】的更多相关文章
- 题解-CF755G PolandBall and Many Other Balls
题面 CF755G PolandBall and Many Other Balls 给定 \(n\) 和 \(m\).有一排 \(n\) 个球,求对于每个 \(1\le k\le m\),选出 \(k ...
- CF755G PolandBall and Many Other Balls/soj 57送饮料
题意:长度为n的序列,相邻两个或单独一个可以划分到一个组,每个元素最多处于一个组. 问恰好分割成k(1<=k<=m)段有多少种方案? 标程: #include<bits/stdc++ ...
- CF755G PolandBall and Many Other Balls 题解
从神 Karry 的题单过来的,然后自己瞎 yy 了一个方法,看题解区里没有,便来写一个题解 一个常数和复杂度都很大的题解 令 \(dp_{i,j}\) 为 在 \(i\) 个球中选 \(j\) 组的 ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ
因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
- CodeForces 553E Kyoya and Train 动态规划 多项式 FFT 分治
原文链接http://www.cnblogs.com/zhouzhendong/p/8847145.html 题目传送门 - CodeForces 553E 题意 一个有$n$个节点$m$条边的有向图 ...
- 快速傅里叶变换FFT / NTT
目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明 ...
- 北京培训记day1
数学什么的....简直是丧心病狂啊好不好 引入:Q1:前n个数中最多能取几个,使得没有一个数是另一个的倍数 答案:(n/2)上取整 p.s.取后n/2个就好了 Q2:在Q1条件下,和最小为多少 答 ...
- NOI前的考试日志
4.14 网络流专项测试 先看T1,不会,看T2,仙人掌???wtf??弃疗.看T3,貌似最可做了,然后开始刚,刚了30min无果,打了50分暴力,然后接着去看T1,把序列差分了一下,推了会式子,发现 ...
随机推荐
- Hibernate5 入门之SessionFactory对象的创建
hibernate5创建SessionFactory不同于hibernate4和hibernate3,下面是代码示例. package top.scorpion.util; import org.hi ...
- 解析一个body片断
问题 假如你有一个HTML片断 (比如. 一个 div 包含一对 p 标签; 一个不完整的HTML文档) 想对它进行解析.这个HTML片断可以是用户提交的一条评论或在一个CMS页面中编辑body部分. ...
- 一些Java知识点
1 import java.util.ArrayList; 2 3 public class Main { 4 5 public static void main(String[] args) { 6 ...
- python入门(需要C++基础)
title: python语法入门 author: Sun-Wind date: August 25, 2021 python语法入门 博主最近参加一项比赛,因为需要用到python,所以在这里记录自 ...
- webpack4 插件ProvidePlugin使用遇到的问题
根据博客https://www.cnblogs.com/geyouneihan/p/9769808.html学习webpack4中使用ProvidePlugin遇到了自定义js无法使用的问题,解决之后 ...
- Vue.JS快速上手(组件间的通信)
前言 Vue采用的是组件化思想,那么这些组件间是如何通信的呢?下面详细介绍一下. 所谓组件间通信,不单单是我们字面上理解的相互传递数据,这里还包括一个组件访问另一个组件的实例方法等,如父组件通过ref ...
- 《手把手教你》系列技巧篇(二十三)-java+ selenium自动化测试-webdriver处理浏览器多窗口切换下卷(详细教程)
1.简介 上一篇讲解和分享了如何获取浏览器窗口的句柄,那么今天这一篇就是讲解获取后我们要做什么,就是利用获取的句柄进行浏览器窗口的切换来分别定位不同页面中的元素进行操作. 2.为什么要切换窗口? Se ...
- RHCS+Nginx及Fence机制实现高可用集群
RHCS(Red Hat Cluster Suite,红帽集群套件)是Red Hat公司开发整合的一套综合集群软件组件,提供了集群系统中三种集群构架,分别是高可用性集群.负载均衡集群.存储集群,可以通 ...
- Python - 面向对象编程 - 小实战(3)
需求 房子(House)有户型.总面积.家具名称列表:新房子没有任何的家具 家具(HouseItem)有名字.占地面积 席梦思(bed) 占地 4 平米 衣柜(bed) 占地 2 平米 餐桌(bed) ...
- Jenkins(6)- 新建用户
如果想从头学起Jenkins的话,可以看看这一系列的文章哦 https://www.cnblogs.com/poloyy/category/1645399.html 进入用户管理 点击新建用户 填写新 ...