P1912-[NOI2009]诗人小G【四边形不等式,单调队列】
正题
题目链接:https://www.luogu.com.cn/problem/P1912
题目大意
给出\(n\)个字符串,把这些字符串依次用空格(算一个长度)连接分成若干段,若一段长度为\(x\),那么代价是\(|x-L|^P\)
求代价和最小的方案,如果代价大于\(1e18\)则输出其他东西
\(1\leq n\leq 10^5,1\leq L\leq 3\times 10^6,1\leq P\leq 10\)
解题思路
\(s_i\)表示前\(i\)个字符串的长度和加\(i\),那么有转移方程
\]
这个转移很麻烦不能直接用单调队列之类的优化,但是它满足四边形不等式
\(w_{i,j}=|s_i-s_j-1-L|^P\),然后满足
\]
这里就不证明了,因为证明需要用到求导。
感谢理解的话可以发现因为有个\(abs\),所以对于一个决策来说是先下后上,而且两个决策最多只有一个交点。
所以有决策单调性,我们用单调队列维护一个该决策和它的下一个决策的交换点\(k_i\),然后每次判断新加入的点与队尾的前一个的交换点是否会代替掉队尾即可。
求交换点的话用二分就好了。
时间复杂度\(O(Tn\log n)\)
怕转移太大可以用\(long\ double\)存,因为如果很大的时候精度就不需要管了,我们只需要知道它是否超过\(1e18\)就好了。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long double
using namespace std;
const int N=1e5+10;
int T,n,L,P,p[N],k[N],q[N];
ll f[N],s[N];
char st[N][31];
ll power(ll x,int b){
ll ans=1;
while(b){
if(b&1)ans=ans*x;
x=x*x;b>>=1;
}
return ans;
}
ll calc(int j,int i)
{return f[j]+power(fabs(s[i]-s[j]-1-L),P);}
int bound(int i,int j){
int l=i,r=n;
while(l<=r){
int mid=(l+r)>>1;
if(calc(i,mid)<calc(j,mid))l=mid+1;
else r=mid-1;
}
return l;
}
void print(int n){
if(!n)return;print(p[n]);
for(int i=p[n]+1;i<n;i++)
printf("%s ",st[i]);
puts(st[n]);
}
int main()
{
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&L,&P);
for(int i=1;i<=n;i++){
scanf("%s",st[i]);
s[i]=s[i-1]+strlen(st[i])+1;
}
int head=1,tail=1;q[1]=0;
for(int i=1;i<=n;i++){
while(head<tail&&k[head]<=i)head++;
f[i]=calc(q[head],i);p[i]=q[head];
while(head<tail&&k[tail-1]>=bound(q[tail],i))tail--;
k[tail]=bound(q[tail],i);q[++tail]=i;
}
if(f[n]>1e18)puts("Too hard to arrange");
else printf("%lld\n",(long long)f[n]),print(n);
puts("--------------------");
}
return 0;
}
P1912-[NOI2009]诗人小G【四边形不等式,单调队列】的更多相关文章
- P1912 [NOI2009]诗人小G
P1912 [NOI2009]诗人小G 思路: 平行四边形不等式优化dp 因为f(j, i) = abs(sum[i]-sum[j]+i-j-1-l)^p 满足平行四边形不等式 j < i f( ...
- 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)
洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...
- P1912 [NOI2009]诗人小G[决策单调性优化]
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...
- [NOI2009]诗人小G 四边形优化DP
题目传送门 f[i] = min(f[j] + val(i,j); 其中val(i,j) 满足 四边形dp策略. 代码: #include<bits/stdc++.h> using nam ...
- 洛谷P1912 [NOI2009]诗人小G(决策单调性)
传送门 题解 决策单调性是个啥……导函数是个啥……这题解讲的是啥……我是个啥…… //minamoto #include<iostream> #include<cstdio> ...
- bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...
- 1563: [NOI2009]诗人小G
1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...
- [NOI2009]诗人小G --- DP + 决策单调性
[NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...
- LG1912 [NOI2009]诗人小G
题意 题目描述 小G是一个出色的诗人,经常作诗自娱自乐.但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以 ...
- [NOI2009] 诗人小G [题解]
诗人小G 题目大意 给出 \(n\) 个长度不超过 \(30\) 的句子,要求你对其进行排版. 对于每一行,有一个规定的行标准长度 \(L\) ,每一行的不协调度等于该行的实际长度与行标准长度差的绝对 ...
随机推荐
- .NET Core程序发布报错:project.assets.json”没有“.NETCoreApp,Version=v3.1/win-x64”的目标。确保已运行还原,且“netcoreapp3.1”已包含在项目的 TargetFrameworks中。
在控制台中使用命令发布.NET Core程序的时候,报如下的错误: project.assets.json"没有".NETCoreApp,Version=v3.1/win-x64& ...
- Quartz任务调度(4)JobListener分版本超详细解析
JobListener 我们的jobListener实现类必须实现其以下方法: 方法 说明 getName() getName() 方法返回一个字符串用以说明 JobListener 的名称.对于注册 ...
- Mybatis中多表联查,查询出来的字段出现重名,造成数据异常的解决方法!
在做一对多出现的问题,引发的思考:当数据库表中,主表的主键id和明细表的中的字段名相同时怎么办?Mybatis进行自动映射赋值的时候会不会出现异常? 注意:M ...
- servlet通过响应头Content-Disposition实现文件下载效果
package day08; import java.io.File; import java.io.FileInputStream; import java.io.IOException; impo ...
- java实现全排列输出
java实现全排列输出 转自:http://easonfans.iteye.com/blog/517286 最近在找工作,面试java程序员或者软件工程师,在笔试的时候常常见到这么一道题:全排列 的输 ...
- docker安装与配置redis详细过程
注:大鸟飞过,这只是简单搭建,能快速运用而已!! 第一步 pull redis 命令:docker pull redis 第二步 创建redis管理目录,方便后期管理 命令: mkdir /data/ ...
- tensorflow saver简介+Demo with linear-model
tf.train.Saver提供Save和Restore Tensorflow变量的功能,常用于保存.还原模型训练结果,这在自己的训练和迁移学习中都很有用. 训练.保存脚本: import tenso ...
- Servlet学习笔记(一)之Servlet原理、初始化、生命周期、结构体系
Servlet是用java语言编写的应用到Web服务器端的扩展技术,与java对象的区别是,Servlet对象主要封装了对HTTP请求的处理,并且它的运行需要Servlet容器的支持(以下会介绍原因, ...
- Hadoop day1
Hadoop就是存储海量数据和分析海量数据的工具 1.概念 Hadoop是由java语言编写的,在分布式服务器集群上存储海量数据并运行分布式分析应用的开源框架,其核心部件是HDFS与MapReduce ...
- java 多线程Thread和Runnable的区别
如果一个类继承Thread,则不适合资源共享.但是如果实现了Runable接口的话,则很容易的实现资源共享 实现Runnable接口比继承Thread类所具有的优势:1. 适合多个相同的程序代码的线程 ...