[gdoi2018 day1]小学生图论题【分治NTT】
正题
题目大意
一张随机的\(n\)个点的竞赛图,给出它的\(m\)条相互无交简单路径,求这张竞赛图的期望强联通分量个数。
\(1\leq n,m\leq 10^5\)
解题思路
先考虑\(m=0\)的做法,此时我们考虑一个强联通块的贡献,注意到竞赛图中强联通块的会构成一条链的形式,枚举一个大小\(S\),那么此时联通块内到联通块外的边方向确定,那么这个联通块产生贡献的的概率就是\(\frac{1}{2}^{S(n-S)}\),选出这个联通块的方案就是\(\binom{n}{i}\)。
那么答案就是
\]
考虑包含给出路径的情况,因为无交,所以点的编号不影响答案,只有路径长度影响方案。
考虑一条路径对一个强联通分量造成的贡献,考虑如果一条链的一半在这个块内,一条在这个块外,那么就会确定一条边的方案。所以除数要除以\(2\)。
把单点看成链的话,那么一个块由多条链组成,对于每条链构建一个形如
\]
的多项式,然后跑分治\(NTT\)乘起来再用上面的式子做就好了。
时间复杂度\(O(n\log^2 n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
#define ll long long
using namespace std;
const ll N=4e5+10,T=20,P=998244353;
struct Poly{
ll a[N],n;
}F[T];
ll n,m,a[N],r[N],x[N],y[N];
bool v[T];
ll read(){
ll x=0,f=1;char c=getchar();
while(!isdigit(c)){if(c=='-')f=-f;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
return x*f;
}
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void NTT(ll *f,ll n,ll op){
for(ll i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll tmp=power(3,(P-1)/p),len=p>>1;
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<n;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=buf*f[i+len]%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll invn=power(n,P-2);
for(ll i=0;i<n;i++)
f[i]=f[i]*invn%P;
}
return;
}
void Mul(Poly &F,Poly &G){
ll n=1;
while(n<F.n+G.n)n<<=1;
for(ll i=0;i<F.n;i++)x[i]=F.a[i];
for(ll i=0;i<G.n;i++)y[i]=G.a[i];
for(ll i=F.n;i<n;i++)x[i]=0;
for(ll i=G.n;i<n;i++)y[i]=0;
for(ll i=0;i<n;i++)r[i]=(r[i>>1]>>1)|((i&1)?(n>>1):0);
NTT(x,n,1);NTT(y,n,1);
for(ll i=0;i<n;i++)x[i]=x[i]*y[i]%P;
NTT(x,n,-1);
for(ll i=0;i<n;i++)F.a[i]=x[i];
F.n=F.n+G.n-1;return;
}
ll Find(){
for(ll i=0;i<T;i++)
if(!v[i]){v[i]=1;return i;}
}
ll Solve(ll l,ll r){
if(l==r){
ll p=Find();F[p].a[0]=1;F[p].a[a[l]]=1;
for(ll i=1;i<a[l];i++)F[p].a[i]=2;
F[p].n=a[l]+1;return p;
}
ll mid=(l+r)>>1;
ll ls=Solve(l,mid),rs=Solve(mid+1,r);
Mul(F[ls],F[rs]);v[rs]=0;
return ls;
}
signed main()
{
freopen("graph.in","r",stdin);
freopen("graph.out","w",stdout);
n=read();m=read();
ll sum=n,ans=0;
for(ll i=1;i<=m;i++){
a[i]=read();sum-=a[i];
for(ll j=1,x;j<=a[i];j++)x=read();
}
while(sum)
a[++m]=1,sum--;
ll p=Solve(1,m);
for(ll i=0;i<n;i++)
(ans+=F[p].a[i]*power((P+1)/2,i*(n-i))%P)%=P;
printf("%lld\n",ans);
return 0;
}
[gdoi2018 day1]小学生图论题【分治NTT】的更多相关文章
- 【XSY2887】【GDOI2018】小学生图论题 分治FFT 多项式exp
题目描述 在一个 \(n\) 个点的有向图中,编号从 \(1\) 到 \(n\),任意两个点之间都有且仅有一条有向边.现在已知一些单向的简单路径(路径上任意两点各不相同),例如 \(2\to 4\to ...
- GDOI2018 小学生图论题 [NTT]
并没有传送门qwq 思路 首先要知道一个结论(或者说是一个套路):一个竞赛图缩点之后必定是一条链. 那么强联通分量的个数,就是这条链的边数+1. 考虑一条边什么时候会出现:当且仅当点集可以被分成\(S ...
- GDOI2018 Day1 题目总结
T1:农场 题意:有一个长为 $n$ 的序列 $a$,要求将其分成尽可能多的部分,使得每一部分的 $a_i$ 的和相等.求最多能分成的部分数. $30\%:1\le n\le 1000$ $80\%: ...
- 【BZOJ-3456】城市规划 CDQ分治 + NTT
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{ ...
- HDU 5552 Bus Routes(2015合肥现场赛A,计数,分治NTT)
题意 给定n个点,任意两点之间可以不连边也可以连边.如果连边的话可以染上m种颜色. 求最后形成的图,是一个带环连通图的方案数. 首先答案是n个点的图减去n个点能形成的树. n个点能形成的树的方案数比 ...
- BZOJ3456 城市规划 【分治NTT】
题目链接 BZOJ3456 题解 据说这题是多项式求逆 我太弱不会QAQ,只能\(O(nlog^2n)\)分治\(NTT\) 设\(f[i]\)表示\(i\)个节点的简单无向连通图的数量 考虑转移,直 ...
- HDU 5279 YJC plays Minecraft (分治NTT优化DP)
题目传送门 题目大意:有$n$个小岛,每个小岛上有$a_{i}$个城市,同一个小岛上的城市互相连接形成一个完全图,第$i$个小岛的第$a_{i}$个城市和第$i+1$个小岛的第$1$个城市连接,特别地 ...
- #565. 「LibreOJ Round #10」mathematican 的二进制(期望 + 分治NTT)
题面 戳这里,题意简单易懂. 题解 首先我们发现,操作是可以不考虑顺序的,因为每次操作会加一个 \(1\) ,每次进位会减少一个 \(1\) ,我们就可以考虑最后 \(1\) 的个数(也就是最后的和) ...
- LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...
随机推荐
- Intellj IDEA 光标显示insert状态解决办法
使用idea过程中,不知道怎么回事,鼠标的光标老是insert状态,体验效果极其差劲,于是去百度,扒拉了好一阵,过滤了垃圾博客,发现了有两种方法可以解决此问题: 第一种方法: 在File------& ...
- 记录一次java项目上线部署
环境 操作系统:CentOS Linux release 8.0.1905 数据库:mariadb10.3.17 安装数据库 yum install -y mariadb mariadb-server ...
- Java:学习什么是多线程
线程是什么 进程是对CPU的抽象,而线程更细化了进程的运行流程 先看一下这个图 线程和进程的关系有 进程中就是线程在执行,所有(主)线程执行完了进程也就结束了 多个线程从1秒钟是同时运行完成,从1纳秒 ...
- 2、二进制安装K8s 之 部署ETCD集群
二进制安装K8s 之 部署ETCD集群 一.下载安装cfssl,用于k8s证书签名 二进制包地址:https://pkg.cfssl.org/ 所需软件包: cfssl 1.6.0 cfssljson ...
- WPF---数据绑定之ValidationRule数据校验(六)
一.概述 我们知道,Binding好比架设在Source和Target之间的桥梁,数据可以借助这个桥梁进行流通.在数据流通的过程中,我们可以在Binding这座桥梁上设置关卡,对数据的有效性进行验证. ...
- VMware中安装CentOS Linux release 7.4.1708 (Core)
本篇文章主要介绍了VMware安装Centos7超详细过程(图文),具有一定的参考价值,感兴趣的小伙伴们可以参考一下 1.软硬件准备 软件:推荐使用VMwear,我用的是VMwear 12 镜像:Ce ...
- 简析时序数据库 InfluxDB
时序数据基础 时序数据特点 时序数据TimeSeries是一连串随时间推移而发生变化的相关事件. 以下图的 CPU 监控数据为例,同个 IP 的相关监控数据组成了一条时序数据,不相关数据则分布在不同的 ...
- mysql最强
MYSQL 与mysql第一次亲密接触 数据库相关概念 一.数据库的好处 二.数据库的常见概念 ★ 三.数据库存储数据的特点 四.常见的数据库管理系统 MYSQL的介绍 一.MySQL的背景 二.My ...
- 求证:-1/2 <= {2x} - {x} < 1/2
证:由 x = [x] + {x},知2x = 2[x] + 2{x}. 1.若{x}落在[0,1/2),则2{x} < 1,于是有{2x} = 2{x},此时 {2x} - {x} = {x} ...
- openresty lua-resty-string md5 sha aes random string
安装 https://github.com/openresty/lua-resty-string $ sudo opm get openresty/lua-resty-string $ ls -al ...