R语言-混合型数据聚类
利用聚类分析,我们可以很容易地看清数据集中样本的分布情况。以往介绍聚类分析的文章中通常只介绍如何处理连续型变量,这些文字并没有过多地介绍如何处理混合型数据(如同时包含连续型变量、名义型变量和顺序型变量的数据)。本文将利用 Gower 距离、PAM(partitioning around medoids)算法和轮廓系数来介绍如何对混合型数据做聚类分析。
---------------------------------------------------------------------------------------------------
本文主要分为三个部分
- 距离计算
- 聚类算法的选择
聚类个数的选择
为了介绍方便,本文直接使用 ISLR 包中的 College 数据集。该数据集包含了自 1995 年以来美国大学的 777 条数据,其中主要有以下几个变量:
- 连续型变量
- 录取率
- 学费
- 新生数量
- 分类型变量
- 公立或私立院校
- 是否为高水平院校,即所有新生中毕业于排名前 10% 高中的新生数量占比是否大于 50%
本文中涉及到的R包有:
In [3]: set.seed(1680) # 设置随机种子,使得本文结果具有可重现性 library(dplyr)
library(ISLR)
library(cluster)
library(Rtsne)
library(ggplot2)
Attaching package: ‘dplyr’ The following objects are masked from ‘package:stats’: filter, lag The following objects are masked from ‘package:base’: intersect, setdiff, setequal, union
构建聚类模型之前,我们需要做一些数据清洗工作:
- 录取率等于录取人数除以总申请人数
- 判断某个学校是否为高水平院校,需要根据该学校的所有新生中毕业于排名前 10% 高中的新生数量占比是否大于 50% 来决定
In [5]: college_clean <- College %>%
mutate(name = row.names(.),
accept_rate = Accept/Apps,
isElite = cut(Top10perc,
breaks = c(0, 50, 100),
labels = c("Not Elite", "Elite"),
include.lowest = TRUE)) %>%
mutate(isElite = factor(isElite)) %>%
select(name, accept_rate, Outstate, Enroll,
Grad.Rate, Private, isElite) glimpse(college_clean)
Observations: 777
Variables: 7
$ name (chr) "Abilene Christian University", "Adelphi University", "...
$ accept_rate (dbl) 0.7421687, 0.8801464, 0.7682073, 0.8369305, 0.7564767, ...
$ Outstate (dbl) 7440, 12280, 11250, 12960, 7560, 13500, 13290, 13868, 1...
$ Enroll (dbl) 721, 512, 336, 137, 55, 158, 103, 489, 227, 172, 472, 4...
$ Grad.Rate (dbl) 60, 56, 54, 59, 15, 55, 63, 73, 80, 52, 73, 76, 74, 68,...
$ Private (fctr) Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes, Yes,...
$ isElite (fctr) Not Elite, Not Elite, Not Elite, Elite, Not Elite, Not...
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAIAAACQd1PeAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAyBpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDUuMC1jMDYwIDYxLjEzNDc3NywgMjAxMC8wMi8xMi0xNzozMjowMCAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RSZWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHhtcDpDcmVhdG9yVG9vbD0iQWRvYmUgUGhvdG9zaG9wIENTNSBXaW5kb3dzIiB4bXBNTTpJbnN0YW5jZUlEPSJ4bXAuaWlkOkJDQzA1MTVGNkE2MjExRTRBRjEzODVCM0Q0NEVFMjFBIiB4bXBNTTpEb2N1bWVudElEPSJ4bXAuZGlkOkJDQzA1MTYwNkE2MjExRTRBRjEzODVCM0Q0NEVFMjFBIj4gPHhtcE1NOkRlcml2ZWRGcm9tIHN0UmVmOmluc3RhbmNlSUQ9InhtcC5paWQ6QkNDMDUxNUQ2QTYyMTFFNEFGMTM4NUIzRDQ0RUUyMUEiIHN0UmVmOmRvY3VtZW50SUQ9InhtcC5kaWQ6QkNDMDUxNUU2QTYyMTFFNEFGMTM4NUIzRDQ0RUUyMUEiLz4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+IDw/eHBhY2tldCBlbmQ9InIiPz6p+a6fAAAAD0lEQVR42mJ89/Y1QIABAAWXAsgVS/hWAAAAAElFTkSuQmCC" alt="" data-src="http://mmbiz.qpic.cn/mmbiz/ghbI8QDvgWtSO0jTf5yxHdvriaAiblToAicicKFOrhd0J6ialM002KzoJ5zibE8UjKJ7x6P6KuKT0RTUFibXkEHxzQqKA/0?wx_fmt=png" data-ratio="0.45454545454545453" data-w="495" />aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAIAAACQd1PeAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAyBpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDUuMC1jMDYwIDYxLjEzNDc3NywgMjAxMC8wMi8xMi0xNzozMjowMCAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RSZWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHhtcDpDcmVhdG9yVG9vbD0iQWRvYmUgUGhvdG9zaG9wIENTNSBXaW5kb3dzIiB4bXBNTTpJbnN0YW5jZUlEPSJ4bXAuaWlkOkJDQzA1MTVGNkE2MjExRTRBRjEzODVCM0Q0NEVFMjFBIiB4bXBNTTpEb2N1bWVudElEPSJ4bXAuZGlkOkJDQzA1MTYwNkE2MjExRTRBRjEzODVCM0Q0NEVFMjFBIj4gPHhtcE1NOkRlcml2ZWRGcm9tIHN0UmVmOmluc3RhbmNlSUQ9InhtcC5paWQ6QkNDMDUxNUQ2QTYyMTFFNEFGMTM4NUIzRDQ0RUUyMUEiIHN0UmVmOmRvY3VtZW50SUQ9InhtcC5kaWQ6QkNDMDUxNUU2QTYyMTFFNEFGMTM4NUIzRDQ0RUUyMUEiLz4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+IDw/eHBhY2tldCBlbmQ9InIiPz6p+a6fAAAAD0lEQVR42mJ89/Y1QIABAAWXAsgVS/hWAAAAAElFTkSuQmCC" alt="" data-src="http://mmbiz.qpic.cn/mmbiz/ghbI8QDvgWtSO0jTf5yxHdvriaAiblToAicHVec9IXcvsQXJg940jM82mMIciaIkTXDcGac523KDNr6zrf9yMw8iaug/0?wx_fmt=png" data-ratio="0.434375" data-w="640" />距离计算
聚类分析的第一步是定义样本之间距离的度量方法,最常用的距离度量方法是欧式距离。然而欧氏距离只适用于连续型变量,所以本文将采用另外一种距离度量方法—— Gower 距离。
1Gower 距离
Gower 距离的定义非常简单。首先每个类型的变量都有特殊的距离度量方法,而且该方法会将变量标准化到[0,1]之间。接下来,利用加权线性组合的方法来计算最终的距离矩阵。不同类型变量的计算方法如下所示:
- 连续型变量:利用归一化的曼哈顿距离
- 顺序型变量:首先将变量按顺序排列,然后利用经过特殊调整的曼哈顿距离
- 名义型变量:首先将包含 k 个类别的变量转换成 k 个 0-1 变量,然后利用 Dice 系数做进一步的计算
- 优点:通俗易懂且计算方便
- 缺点:非常容易受无标准化的连续型变量异常值影响,所以数据转换过程必不可少;该方法需要耗费较大的内存
利用 daisy 函数,我们只需要一行代码就可以计算出 Gower 距离。需要注意的是,由于新生入学人数是右偏变量,我们需要对其做对数转换。daisy函数内置了对数转换的功能,你可以调用帮助文档来获取更多的参数说明。
In [6]: # Remove college name before clustering gower_dist <- daisy(college_clean[, -1],
metric = "gower",
type = list(logratio = 3)) # Check attributes to ensure the correct methods are being used
# (I = interval, N = nominal)
# Note that despite logratio being called,
# the type remains coded as "I" summary(gower_dist)
Out[6]: 301476 dissimilarities, summarized :
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0018601 0.1034400 0.2358700 0.2314500 0.3271400 0.7773500
Metric : mixed ; Types = I, I, I, I, N, N
Number of objects : 777
此外,我们可以通过观察最相似和最不相似的样本来判断该度量方法的合理性。本案例中,圣托马斯大学和约翰卡罗尔大学最相似,而俄克拉荷马科技和艺术大学和哈佛大学差异最大。
In [7]: gower_mat <- as.matrix(gower_dist) # Output most similar pair college_clean[
which(gower_mat == min(gower_mat[gower_mat != min(gower_mat)]),
arr.ind = TRUE)[1, ], ]
Out[7]: name accept_rate Outstate Enroll Grad.Rate Private isElite
682 University of St. Thomas MN 0.8784638 11712 828 89 Yes Not Elite
284 John Carroll University 0.8711276 11700 820 89 Yes Not Elite
In [8]: # Output most dissimilar pair college_clean[
which(gower_mat == max(gower_mat[gower_mat != max(gower_mat)]),
arr.ind = TRUE)[1, ], ]
Out[8]: name accept_rate Outstate Enroll Grad.Rate Private isElite
673 University of Sci. and Arts of Oklahoma 0.9824561 3687 208 43 No Not Elite
251 Harvard University 0.1561486 18485 1606 100 Yes Elite
聚类算法的选择
现在我们已经计算好样本间的距离矩阵,接下来需要选择一个合适的聚类算法,本文采用 PAM(partioniong around medoids)算法来构建模型,PAM 算法的主要步骤:
- 随机选择 k 个数据点,并将其设为簇中心点
- 遍历所有样本点,并将样本点归入最近的簇中
- 对每个簇而言,找出与簇内其他点距离之和最小的点,并将其设为新的簇中心点
- 重复第2步,直到收敛
该算法和 K-means 算法非常相似。事实上,除了中心点的计算方法不同外,其他步骤都完全一致 。
- 优点:简单易懂且不易受异常值所影响
- 缺点:算法时间复杂度为 O(n2)
聚类个数的选择
我们将利用轮廓系数来确定最佳的聚类个数,轮廓系数是一个用于衡量聚类离散度的内部指标,该指标的取值范围是[-1,1],其数值越大越好。通过比较不同聚类个数下轮廓系数的大小,我们可以看出当聚类个数为 3 时,聚类效果最好。
In [9]: # Calculate silhouette width for many k using PAM sil_width <- c(NA) for(i in 2:10){ pam_fit <- pam(gower_dist,
diss = TRUE,
k = i) sil_width[i] <- pam_fit$silinfo$avg.width } # Plot sihouette width (higher is better) plot(1:10, sil_width,
xlab = "Number of clusters",
ylab = "Silhouette Width")
lines(1:10, sil_width)
聚类结果解释
1描述统计量
聚类完毕后,我们可以调用 summary 函数来查看每个簇的汇总信息。从这些汇总信息中我们可以看出:簇1主要是中等学费且学生规模较小的私立非顶尖院校,簇2主要是高收费、低录取率且高毕业率的私立顶尖院校,而簇3则是低学费、低毕业率且学生规模较大的公立非顶尖院校。
In [18]: pam_fit <- pam(gower_dist, diss = TRUE, k = 3) pam_results <- college_clean %>%
dplyr::select(-name) %>%
mutate(cluster = pam_fit$clustering) %>%
group_by(cluster) %>%
do(the_summary = summary(.)) print(pam_results$the_summary)
[[1]]
accept_rate Outstate Enroll Grad.Rate Private
Min. :0.3283 Min. : 2340 Min. : 35.0 Min. : 15.00 No : 0
1st Qu.:0.7225 1st Qu.: 8842 1st Qu.: 194.8 1st Qu.: 56.00 Yes:500
Median :0.8004 Median :10905 Median : 308.0 Median : 67.50
Mean :0.7820 Mean :11200 Mean : 418.6 Mean : 66.97
3rd Qu.:0.8581 3rd Qu.:13240 3rd Qu.: 484.8 3rd Qu.: 78.25
Max. :1.0000 Max. :21700 Max. :4615.0 Max. :118.00
isElite cluster
Not Elite:500 Min. :1
Elite : 0 1st Qu.:1
Median :1
Mean :1
3rd Qu.:1
Max. :1 [[2]]
accept_rate Outstate Enroll Grad.Rate Private
Min. :0.1545 Min. : 5224 Min. : 137.0 Min. : 54.00 No : 4
1st Qu.:0.4135 1st Qu.:13850 1st Qu.: 391.0 1st Qu.: 77.00 Yes:65
Median :0.5329 Median :17238 Median : 601.0 Median : 89.00
Mean :0.5392 Mean :16225 Mean : 882.5 Mean : 84.78
3rd Qu.:0.6988 3rd Qu.:18590 3rd Qu.:1191.0 3rd Qu.: 94.00
Max. :0.9605 Max. :20100 Max. :4893.0 Max. :100.00
isElite cluster
Not Elite: 0 Min. :2
Elite :69 1st Qu.:2
Median :2
Mean :2
3rd Qu.:2
Max. :2 [[3]]
accept_rate Outstate Enroll Grad.Rate Private
Min. :0.3746 Min. : 2580 Min. : 153 Min. : 10.00 No :208
1st Qu.:0.6423 1st Qu.: 5295 1st Qu.: 694 1st Qu.: 46.00 Yes: 0
Median :0.7458 Median : 6598 Median :1302 Median : 54.50
Mean :0.7315 Mean : 6698 Mean :1615 Mean : 55.42
3rd Qu.:0.8368 3rd Qu.: 7748 3rd Qu.:2184 3rd Qu.: 65.00
Max. :1.0000 Max. :15516 Max. :6392 Max. :100.00
isElite cluster
Not Elite:199 Min. :3
Elite : 9 1st Qu.:3
Median :3
Mean :3
3rd Qu.:3
Max. :3
PAM 算法的另一个优点是各个簇的中心点是实际的样本点。从聚类结果中我们可以看出,圣弗朗西斯大学是簇1 的中心点,巴朗德学院是簇2 的中心点,而密歇根州州立大学河谷大学是簇3 的中心点。
In [19]: college_clean[pam_fit$medoids, ]
Out[19]: name accept_rate Outstate Enroll Grad.Rate Private isElite
492 Saint Francis College 0.7877629 10880 284 69 Yes Not Elite
38 Barnard College 0.5616987 17926 531 91 Yes Elite
234 Grand Valley State University 0.7525653 6108 1561 57 No Not Elite
2可视化方法
t-SNE 是一种降维方法,它可以在保留聚类结构的前提下,将多维信息压缩到二维或三维空间中。借助t-SNE我们可以将 PAM 算法的聚类结果绘制出来,有趣的是私立顶尖院校和公立非顶尖院校这两个簇中间存在一个小聚类簇。
In [22]: tsne_obj <- Rtsne(gower_dist, is_distance = TRUE) tsne_data <- tsne_obj$Y %>%
data.frame() %>%
setNames(c("X", "Y")) %>%
mutate(cluster = factor(pam_fit$clustering),
name = college_clean$name) ggplot(aes(x = X, y = Y), data = tsne_data) +
geom_point(aes(color = cluster))
进一步探究可以发现,这一小簇主要包含一些竞争力较强的公立院校,比如弗吉尼亚大学和加州大学伯克利分校。虽然无法通过轮廓系数指标来证明多分一类是合理的,但是这 13 所院校的确显著不同于其他三个簇的院校。
In [25]: tsne_data %>%
filter(X > 15 & X < 25,
Y > -15 & Y < -10) %>%
left_join(college_clean, by = "name") %>%
collect %>%
.[["name"]]
Out[25]: 'Kansas State University' 'North Carolina State University at Raleigh'
'Pennsylvania State Univ. Main Campus' 'SUNY at Buffalo'
'Texas A&M Univ. at College Station' 'University of Georgia' 'University of Kansas'
'University of Maryland at College Park' 'University of Minnesota Twin Cities'
'University of Missouri at Columbia' 'University of Tennessee at Knoxville'
'University of Texas at Austin'
原文链接:https://dpmartin42.github.io/blogposts/r/cluster-mixed-types
R语言-混合型数据聚类的更多相关文章
- 用R语言提取数据框中日期对应年份(列表转矩阵)
用R语言提取数据框中日期对应年份(列表转矩阵) 在数据处理中常会遇到要对数据框中的时间做聚类处理,如从"%m/%d/%Y"中提取年份. 对应操作为:拆分成列表——列表转矩阵——利用 ...
- 【机器学习与R语言】11- Kmeans聚类
目录 1.理解Kmeans聚类 1)基本概念 2)kmeans运作的基本原理 2.Kmeans聚类应用示例 1)收集数据 2)探索和准备数据 3)训练模型 4)评估性能 5)提高模型性能 1.理解Km ...
- R语言进行数据预处理wranging
R语言进行数据预处理wranging li_volleyball 2016年3月22日 data wrangling with R packages:tidyr dplyr Ground rules ...
- R语言进行数据预处理
R语言进行数据预处理wranging li_volleyball 2016年3月22日 data wrangling with Rpackages:tidyr dplyr Ground rules l ...
- R语言 我要如何开始R语言_数据分析师
R语言 我要如何开始R语言_数据分析师 我要如何开始R语言? 很多时候,我们的老板跟我们说,这个东西你用R语言去算吧,Oh,My god!什么是R语言?我要怎么开始呢? 其实回答这个问题很简单,首先, ...
- R语言读写数据
R语言读写数据 一般做模型的时候,从外部的excel中读入数据,我现在常用的比较多的是read_csv(file) 读入之前先把excel数据转化成.csv格式 同样的把结果输出来的时候用的是writ ...
- R语言|数据特征分析
对数据进行质量分析以后,接下来可通过绘制图表.计算某些特征量等手段进行数据的特征分析. 主要通过分布分析.对比分析.统计量分析.周期性分析.贡献度分析.相关性分析等角度进行展开. 2.1 分布分析 分 ...
- R语言的数据输入
既然了解了R语言的基本数据类型,那么如何将庞大的数据送入R语言进行处理呢?送入的数据又是如何在R语言中进行存储的呢?处理这些数据的方法又有那些呢?下面我们一起来探讨一下. 首先,数据输入最直接最直观的 ...
- R语言外部数据读取
0 引言 使用R语言.Python等进行数据处理的第一步就是要导入数据(也可以使用UCI数据集),下文主要根据R语言的帮助文档来介绍外部文件数据的导入方法和注意事项.下面先附上一些指令. 1 格式r ...
随机推荐
- shell脚本练习题
下面列出了几个linux学习中的shell脚本题目 1.九九乘法表 #!/bin/bash echo "九九乘法表" # 注意((之间不能有空格.加减乘除的格式.还有转义字符\*. ...
- Android常用adb命令
1.进入手机命令行模式 adb shell 有多部手机的话 adb -s + 手机编号 + shell 2.安装apk adb install 然后将apk文件拖进命令行 卸载apk adb unin ...
- 读书笔记 effective c++ Item 46 如果想进行类型转换,在模板内部定义非成员函数
1. 问题的引入——将operator*模板化 Item 24中解释了为什么对于所有参数的隐式类型转换,只有非成员函数是合格的,并且使用了一个为Rational 类创建的operator*函数作为实例 ...
- Spark名词解释及关系
随着对spark的业务更深入,对spark的了解也越多,然而目前还处于知道的越多,不知道的更多阶段,当然这也是成长最快的阶段.这篇文章用作总结最近收集及理解的spark相关概念及其关系. 名词 dri ...
- 跟着刚哥梳理java知识点——枚举和注解(十四)
enum Season{ SPRING("spring","春暖花开"), SUMMER("summer","夏日炎炎" ...
- 利刃 MVVMLight 5:绑定在表单验证上的应用
表单验证是MVVM体系中的重要一块.而绑定除了推动 Model-View-ViewModel (MVVM) 模式松散耦合 逻辑.数据 和 UI定义 的关系之外,还为业务数据验证方案提供强大而灵活的支持 ...
- node服务成长之路
我们的系统也从第一代平台开始到现在第四代平台更换中,对这四代平台做一个简单的介绍: 第一代平台,主要是集中式,以快速上线为目的:第二代平台主要是分布式改造,缓解各服务压力:第三代平台主要做服务端SOA ...
- win7下用SSH连接linux虚拟机
本文来自转载:原文 [需求] 在win7环境下用SSH(SecureShell)连接本地的一台虚拟机上ubuntu(11.10)系统 [环境] win7,ubuntu,vmware(8.0) [方案 ...
- 使用NPOI写入Excel数据(ASP.NET)
第一次做这个写入数据的功能,研究了下npoi的类 IWorkbook wb = new HSSFWorkbook(); //创建表 ISheet sh = wb.CreateSheet("X ...
- iOS 关于定位你该注意的那些事
其实现在对于一个APP来说,定位用户的位置是件很容易的事情,有三种解决方案供您选择: (1)原生 (2)高德地图 (3)百度地图 1.解决方案的选择 其实单说iOS开发来说应用哪种方案都无所谓 ...