D. Museum
time limit per test:

2 seconds

memory limit per test:

256 megabytes

input:

standard input

output:

standard output

One day as Petya and his friend Vasya were having one of their numerous trips, they decided to visit a museum castle. The museum has a specific shape: it consists of n rooms connected with m corridors so that one can access any room from any other one.

After the two friends had a little walk around the museum, they decided to split and watch the pieces of art each of them found interesting. They agreed to meet in one of the rooms at six p.m. However, they forgot one quite essential thing: they didn't specify the place to meet and when the time came, they started to rush about the museum looking for each other (they couldn't call each other as roaming made a call's cost skyrocket).

Yet, even despite the whole rush, they couldn't get enough of the pieces of art, that's why each of them has the following strategy: each minute he make a decision where to go — with probability pi he doesn't move to any other place during this minute (i.e. he stays in the room). With probability 1 - pi he equiprobably choose one of the adjacent rooms and went there along the corridor. Here i is the ordinal number of the current room. Building was expensive in ancient times, that's why each corridor connected two different rooms, and any two rooms had no more than one corridor between them.

The boys act simultaneously. As the corridors are dark, it is impossible to meet there; however, one can walk along the corridors in both directions (besides, the two boys can be going through the same corridor simultaneously without meeting). The boys act like that until they meet each other. More formally, the two friends meet when at some moment of time both of them decided to appear in the same room.

For each room find the probability that the boys will meet there considering that at 6 p.m. they are positioned in rooms a and bcorrespondingly.

Input

The first line contains four integers: n (1 ≤ n ≤ 22), representing the numbers of rooms; m , representing the number of corridors; a, b (1 ≤ a, b ≤ n), representing the numbers of Petya's and Vasya's starting rooms correspondingly.

Next m lines contain pairs of numbers — the numbers of rooms connected by a corridor. Next n lines contain probabilities pi(0.01 ≤ pi ≤ 0.99) with the accuracy of up to four digits after the decimal point — the probability to stay in room i.

It is guaranteed that every room can be reached from every other room by corridors.

Output

In the only line print n space-separated numbers, the i-th number should represent the probability that the friends meet in the i-th room with absolute or relative error of no more than 10 - 6.

Examples
input
2 1 1 2
1 2
0.5
0.5
output
0.5000000000 0.5000000000 
input
4 4 1 2
1 2
2 3
3 4
4 1
0.5
0.5
0.5
0.5
output
0.3333333333 0.3333333333 0.1666666667 0.1666666667 
Note

In the first sample the museum is symmetric. That means the probabilities to meet in rooms 1 and 2 are equal. And their sum equals to one. So, each probability equals 0.5.

题解

第一次来cf做题,98个测试点真的是吓到我了

这个题和"hnoi2013游走"比较像,都是无向图瞎跑处理问题

但不一样的是,这个题没有固定的终点

又观察到n比较小,所以我们不妨枚举终点,即对每个点t来说,枚举t,计算t为终点时两个人在t点会面的概率

设在i点停留的概率为p[i],i点出度为du[i]设从i点走向某一点的概率为k[i],则k[i]=(1-p[i])/du[i]

设这两个人一个人在i,一个人在j,则有如下情况:

1°:i==t&&j==t,则f[i][j]=1;

2°:i==j&&i!=t,则f[i][j]=0;

如果均不满足,则

3°f[i][j]=p[i]*p[i]*f[i][j]+k[i]*p[j]*∑{f[u][j],i有边连向u}+p[i]*k[j]*∑{f[i][v],j有边连向v}+k[i]*k[j]*∑{f[u][v],i有边连向u,j有边连向v}

好长一大串啊注意,f[u][j],f[i][v]和f[u][v]可能满足上述条件1°和2°,要特判并处理

这样本题就变成了一个熟悉的问题:解方程组,也就是说高斯消元怎么又是高斯消元啊啊啊

我们的未知量,就是这里的f[i][j]

但是f数组没有一个固定的顺序,所以我们先给每一个数对{i,j(i!=j)}编号,设共有cnt对

设点对{S,T}的编号是num,则对于每个点t来说,答案就是对应编号方程的解了(ans[t]=A[num][cnt+1])

最后,注意特判,即两人一开始就在一间屋子时,除了那个屋子的答案是1,其他屋子都是0,输出就好.

代码见下:

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=;
const int M=(N-)*N>>;
int n,m,S,T,du[N],adj[N],e;
double A[M][M],p[N],k[N],ans[N];
struct node{int qi,zhong,next;}s[M<<];
inline void add(int qi,int zhong)
{s[++e].zhong=zhong;s[e].qi=qi;s[e].next=adj[qi];adj[qi]=e;}
int num[N][N],cnt,f[N];
inline void gasse()
{
for(int i=;i<=cnt;i++)
{
int p=i;
for(int j=i+;j<=cnt;j++)
if(fabs(A[p][i])<fabs(A[j][i]))p=j;
if(p!=i)
for(int j=;j<=cnt+;j++)
swap(A[i][j],A[p][j]);
for(int j=i+;j<=cnt;j++)
{
double tmp=A[j][i]/A[i][i];
for(int k=i;k<=cnt+;k++)
A[j][k]-=tmp*A[i][k];
}
}
for(int i=cnt;i>=;i--)
{
for(int j=i+;j<=cnt;j++)
A[i][cnt+]-=A[j][cnt+]*A[i][j];
A[i][cnt+]/=A[i][i];
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&S,&T);
for(int i=;i<=m;i++)
{
int a,b;scanf("%d%d",&a,&b);
add(a,b),add(b,a),du[a]++,du[b]++;
}
for(int i=;i<=n;i++)
scanf("%lf",&p[i]),k[i]=(1.0-p[i])/du[i];
if(S==T)
{
for(int i=;i<=n;i++)
printf("%.10lf%c",i==S?1.0:0.0,i==n?'\n':' ');
return ;
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(i!=j)
num[i][j]=++cnt;
for(int t=;t<=n;t++)
{
memset(f,,sizeof(f));f[t]=;
for(int i=;i<M;i++)
for(int j=;j<M;j++)
A[i][j]=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(i==j)continue;
int nu=num[i][j];
A[nu][nu]=1.0-p[i]*p[j];
for(int a=adj[i];a;a=s[a].next)
{
int u=s[a].zhong;
int nui=num[u][j];
if(u==j)A[nu][cnt+]+=k[i]*p[j]*f[j];
else A[nu][nui]-=k[i]*p[j];
}
for(int b=adj[j];b;b=s[b].next)
{
int v=s[b].zhong;
int nui=num[i][v];
if(i==v)A[nu][cnt+]+=p[i]*k[j]*f[i];
else A[nu][nui]-=p[i]*k[j];
}
for(int a=adj[i];a;a=s[a].next)
for(int b=adj[j];b;b=s[b].next)
{
int u=s[a].zhong,v=s[b].zhong;
int nui=num[u][v];
if(u==v)A[nu][cnt+]+=k[i]*k[j]*f[u];
else A[nu][nui]-=k[i]*k[j];
}
}
gasse();
ans[t]=A[num[S][T]][cnt+];
}
printf("%.10lf",ans[]);
for(int i=;i<=n;i++)
printf(" %.10lf",ans[i]);
}

codeforces113D

[codeforces113D]Museum的更多相关文章

  1. UVALive 7267 Mysterious Antiques in Sackler Museum (判断长方形)

    Sackler Museum of Art and Archaeology at Peking University is located on a beautiful site near the W ...

  2. Educational Codeforces Round 1 D. Igor In the Museum bfs 并查集

    D. Igor In the Museum Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/598 ...

  3. Igor In the Museum(搜搜搜151515151515******************************************************1515151515151515151515)

    D. Igor In the Museum time limit per test 1 second memory limit per test 256 megabytes input standar ...

  4. A. Night at the Museum Round#376 (Div. 2)

    A. Night at the Museum time limit per test 1 second memory limit per test 256 megabytes input standa ...

  5. Codeforces 376A. Night at the Museum

    A. Night at the Museum time limit per test 1 second memory limit per test 256 megabytes input standa ...

  6. 每日英语:Nanjing's New Sifang Art Museum Illustrates China's Cultural Boom

    In a forest on the outskirts of this former Chinese capital, 58-year-old real-estate developer Lu Ju ...

  7. CodeForces 731A Night at the Museum

    A. Night at the Museum time limit per test 1 second memory limit per test 256 megabytes input standa ...

  8. McNay Art Museum【McNay艺术博物馆】

    McNay Art Museum When I was 17, I read a magazine artice about a museum called the McNay, once the h ...

  9. Codeforces Round #376 (Div. 2) A. Night at the Museum —— 循环轴

    题目链接: http://codeforces.com/contest/731/problem/A A. Night at the Museum time limit per test 1 secon ...

随机推荐

  1. Javascript中call和apply

    在上一章http://www.cnblogs.com/meiyh/p/6207671.html 我有提到javascript很重要的this关键字,现在我们结合这个关键字使用的下面的两个关键字: ca ...

  2. [ext4]03 磁盘布局 – Flexible group分析

    Flexible Block Groups (flex_bg),我称之为"弹性块组",是EXT4文件系统引入的一个feature. 所谓Flexible Block Groups, ...

  3. 多源最短路Floyd 算法————matlab实现

    弗洛伊德(Floyd)算法是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计 ...

  4. 单源最短路Dijkstra算法——matlab实现

    迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijk ...

  5. DTCMS插件的制作实例电子资源管理(三)前台模板页编写

    总目录 插件目录结构(一) Admin后台页面编写(二) 前台模板页编写(三) URL重写(四) 本实例旨在以一个实际的项目中的例子来介绍如何在dtcms中制作插件,本系列文章非入门教程,部分逻辑实现 ...

  6. mysql的下载地址+Download WinMD5

    http://dev.mysql.com/downloads/mysql http://www.nullriver.com/products

  7. 智能指针剖析(上)std::auto_ptr与boost::scoped_ptr

    1. 引入 C++语言中的动态内存分配没有自动回收机制,动态开辟的空间需要用户自己来维护,在出函数作用域或者程序正常退出前必须释放掉. 即程序员每次 new 出来的内存都要手动 delete,否则会造 ...

  8. XSHELL工具上传文件到Linux以及下载文件到本地(Windows)

    Xshell很好用,然后有时候想在windows和linux上传或下载某个文件,其实有个很简单的方法就是rz,sz.首先你的Linux上需要安装安装lrzsz工具包,(如果没有安装请执行以下命令,安装 ...

  9. MySql5.7环境搭建

    1. 安装mysql的linux系统 [root@grewan ~]# cat /etc/redhat-release CentOS release 6.7 (Final) [root@grewan ...

  10. 跟随上次的socket sever,追加Tcplistener、Httplistener的server

    一.Tcplistener搭建web server 1.同socket类似,Tcplistener其实是对socket的封装,方便编程,先初始化tcplistener并且开始监听 //初始化端点信息 ...