http://acm.hdu.edu.cn/showproblem.php?pid=1086

You can Solve a Geometry Problem too

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8861    Accepted Submission(s): 4317

Problem Description
Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point. 

 
Input
Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
A test case starting with 0 terminates the input and this test case is not to be processed.
 
Output
For each case, print the number of intersections, and one line one case.
 
Sample Input
2
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.00
3
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.000
0.00 0.00 1.00 0.00
0
 
题解:本题题干已经排除了两线重合的多边交于一点的情况,故直接枚举所有的边是否相交即可
 #include<cstdio>
#include<cmath>
using namespace std;
#define eps 1e-6
#define N 105
struct point{
double x , y ;
point(double x_, double y_){
x = x_;
y = y_;
}
point(){}
point operator - (const point a) const
{
return point(x-a.x,y-a.y);
}
double operator * (const point a) const
{
return x*a.y - a.x*y;
}
}; struct line{
point s , t;
}L[N]; int main()
{
int T;
while(~scanf("%d",&T),T)
{
for(int i = ;i < T ; i++)
{
scanf("%lf%lf%lf%lf",&L[i].s.x,&L[i].s.y,&L[i].t.x,&L[i].t.y);
}
int ans = ;
for(int i = ; i < T ; i++)
{
for(int j = i+ ; j < T ; j++)//j从i开始保证不会重复判断
{
// if(i==j) continue;
point A = L[i].s;
point B = L[i].t;
point C = L[j].s;
point D = L[j].t;
if((((D-C)*(A-C))*((D-C)*(B-C)))>eps) {continue;}
if((((D-A)*(B-A))*((C-A)*(B-A)))>eps) {continue;}
ans++;
}
}
printf("%d\n",ans);
}
return ;
}

也可以把他们写成函数在外面

 #include <cstdio>
#include <cmath>
using namespace std;
#define eps 1e-8
#define N 105
struct point{
double x, y;
point(){}
point(double _x, double _y) {
x = _x, y = _y;
} point operator - (point a){
return point(x-a.x, y-a.y);
} double operator * (point a){
return x*a.y - y*a.x;
}
}; struct line{
point s, t;
}L[N]; bool ck(line a, line b)
{
point A = a.s, B = a.t, C = b.s, D = b.t;
if(((C-A)*(B-A)) *((D-A)*(B-A)) > eps) return false;
if(((A-C)*(D-C)) *((B-C)*(D-C)) > eps) return false;
return true;
} int main()
{
int n;
while(~scanf("%d", &n), n)
{
for(int i = ; i < n; i++)
scanf("%lf %lf %lf %lf", &L[i].s.x, &L[i].s.y, &L[i].t.x, &L[i].t.y);
int cnt = ;
for(int i = ; i < n; i++)
for(int j = i+; j < n; j++)
cnt += ck(L[i], L[j]);
printf("%d\n", cnt);
}
}

You can Solve a Geometry Problem too(线段求交)的更多相关文章

  1. hdu 1086 You can Solve a Geometry Problem too [线段相交]

    题目:给出一些线段,判断有几个交点. 问题:如何判断两条线段是否相交? 向量叉乘(行列式计算):向量a(x1,y1),向量b(x2,y2): 首先我们要明白一个定理:向量a×向量b(×为向量叉乘),若 ...

  2. HDU1086You can Solve a Geometry Problem too(判断线段相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  3. (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)

    称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...

  4. You can Solve a Geometry Problem too(判断两线段是否相交)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  5. (叉积,线段判交)HDU1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  6. You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...

  7. hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  8. hdu 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  9. HDU 1086:You can Solve a Geometry Problem too

    pid=1086">You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Mem ...

随机推荐

  1. [置顶] Xamarin android中使用signalr实现即时通讯

    前面几天也写了一些signalr的例子,不过都是在Web端,今天我就来实践一下如何在xamarin android中使用signalr,刚好工作中也用到了这个,也算是总结一下学到的东西吧,希望能帮助你 ...

  2. node.js stream

    stream是一个接口,流是可以从一个读取或写入数据的目标对象 ,Node 中有很多对象实现了这个接口   一.nodejs stream类型 1. Readable - 可读操作. Writable ...

  3. [编织消息框架][网络IO模型]Netty Reactor

    严格来讲Netty Reactor是一种设计模式,一听模式两字就知道了吧,套路哈哈 Reactor中文译为“反应堆”. 看图netty处理流程 1.netty server 至少有两组reactor. ...

  4. java log4j基本配置及日志级别配置详解

    java log4j日志级别配置详解 1.1 前言 说出来真是丢脸,最近被公司派到客户公司面试外包开发岗位,本来准备了什么redis.rabbitMQ.SSM框架的相关面试题以及自己做过的一些项目回顾 ...

  5. 房上的猫:HTML5基础

    一.W3C标准 1)W3C标准不是某一个标准,而是一系列的标准的集合,一个网页主要由三部分组成,即结构(Structure),表现(Presentation)和行为(Behavior) 2)不很严谨的 ...

  6. js设置元素class方法小结及classList相关

        给DOM元素设置class是我们在项目中非常容易遇到的,网上的资料和总结也比较多,下面比较全面的整理一下,希望给到大家一些帮助!并引用两种成熟的classList的兼容方法 一.el.setA ...

  7. 深入理解cookie和session

    cookie和session在java web开发中扮演了十分重要的作用,本篇文章对其中的重要知识点做一些探究和总结. 1.cookie存在于浏览器 随意打开一个网址,用火狐的调试工具,随意选取一个链 ...

  8. Mongodb高级查询【二】

    上一篇文章,写了mongodb常规操作,继续写入,本章主要讲高级查询,文本,聚集,大数据查询. Mongodb的查询语法是很多的,是NOSQL队伍中比较丰富的一个.当然有很多查询跟关系型查询无法相比. ...

  9. [树莓派(raspberry pi)] 02、PI3安装openCV开发环境做图像识别(详细版)

    前言 上一篇我们讲了在linux环境下给树莓派安装系统及入门各种资料 ,今天我们更进一步,尝试在PI3上安装openCV开发环境. 博主在做的过程中主要参考一个国外小哥的文章(见最后链接1),不过其教 ...

  10. H5前端性能测试总结

    测试关注指标 Http请求个数 同一个域名不同浏览器内核.不同版本浏览器,大部分并发请求数是6个: 优化方案: a.雪碧图:即CSS Sprite,也称CSS精灵,是一种CSS图像合并技术,该方法是将 ...