题目链接

tarjan参考博客

本文代码参考博客

题意:求在图上可以被所有点到达的点的数量。

首先通过tarjan缩点,将所有内部两两可达的子图缩为一点,新图即为一个有向无环图(即DAG)。

在这个DAG上,若存在不止一个所有点均可到达的点,则所有点不满足题目要求。若存在一个,则该点所代表的连通分量的点数即为答案。

//DAG(有向无环图)上面至少存在一个出度为0的点,否则必然可以成环。

#include<cstdio>
#include<cstring>
#include<stack>
#include<vector>
using namespace std;
typedef long long LL;

;
int n,m;
int idd;            //用来给点标记所属连通分量
int cnt[N];            //cnt[idd]表示编号为idd的连通分量的大小
int id[N];            //记录所属的连通分量
int now,dfn[N];        //表示搜索次序
int low[N];            //记录强连通分量子树的根节点的搜索次序
int d[N];            //d[i]==0时表示,编号为i的连通分量不认为任何其他分量popular
int vis[N],instack[N];
vector<int> adj[N];
stack<int> st;

void init()
{
    idd=;
    memset(vis,,sizeof(vis));
    memset(d,,sizeof(d));
    ; i<=n; i++)
        adj[i].clear();
    while(!st.empty())
        st.pop();
    now=;    //now 表示 tarjan次序
}

void tarjan(int u)
{
    dfn[u]=low[u]=now++;    //标记被访问时间
    vis[u]=instack[u]=;
    st.push(u);
    ; i<adj[u].size(); i++)
    {
        int x=adj[u][i];    //x表示下一个
        if(!vis[x])
        {
            tarjan(x);
            low[u]=min(low[u],low[x]);
        }
        else if(instack[x])
            low[u]=min(low[u],dfn[x]);    //注意两个min的区别
    }
    if(dfn[u]==low[u])    //u结点为根节点
    {
        ,res=;
        while(!st.empty()&&nowp!=u)
        {
            nowp=st.top(),st.pop();
            instack[nowp]=;
            id[nowp]=idd;
            res++;
        }
        cnt[idd++]=res;    //将连通分量的点数记录下来
    }
}

int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        init();
        ; i<m; i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            adj[v].push_back(u);
        }
        ; i<=n; i++)    //强连通分量缩点
            if(!vis[i]) tarjan(i);
        ; i<=n; i++)
            ; j<adj[i].size(); j++)
                if(id[i]!=id[adj[i][j]]) d[id[adj[i][j]]]++;
        ;
        ; i<idd; i++)
            if(!d[i]) res++;
        )
            ; i<idd; i++)
            {
                )
                {
                    printf("%d\n",cnt[i]);
                    break;
                }
            }
        else
            puts(");
    }
}

poj_2186: Popular Cows(tarjan基础题)的更多相关文章

  1. POJ 2186:Popular Cows Tarjan模板题

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25945   Accepted: 10612 De ...

  2. POJ 2168 Popular cows [Tarjan 缩点]

                                                                                                         ...

  3. poj 2186 Popular Cows tarjan

    Popular Cows Description Every cow's dream is to become the most popular cow in the herd. In a herd ...

  4. poj 2186: Popular Cows(tarjan基础题)

    题目链接 tarjan参考博客 题意:求在图上可以被所有点到达的点的数量. 首先通过tarjan缩点,将所有内部两两可达的子图缩为一点,新图即为一个有向无环图(即DAG). 在这个DAG上,若存在不止 ...

  5. POJ - 2186  Popular Cows tarjain模板题

    http://poj.org/problem?id=2186 首先求出所有的强连通分量,分好块.然后对于每一个强连通分量,都标记下他们的出度.那么只有出度是0 的块才有可能是答案,为什么呢?因为既然你 ...

  6. [poj 2186]Popular Cows[Tarjan强连通分量]

    题意: 有一群牛, a会认为b很帅, 且这种认为是传递的. 问有多少头牛被其他所有牛认为很帅~ 思路: 关键就是分析出缩点之后的有向树只能有一个叶子节点(出度为0). 做法就是Tarjan之后缩点统计 ...

  7. POJ 2186 Popular Cows tarjan缩点算法

    题意:给出一个有向图代表牛和牛喜欢的关系,且喜欢关系具有传递性,求出能被所有牛喜欢的牛的总数(除了它自己以外的牛,或者它很自恋). 思路:这个的难处在于这是一个有环的图,对此我们可以使用tarjan算 ...

  8. USACO 2003 Fall Orange Popular Cows /// tarjan缩点 oj22833

    题目大意: n头牛,m个崇拜关系,并且崇拜具有传递性 如果a崇拜b,b崇拜c,则a崇拜c 求最后有几头牛被所有牛崇拜 强连通分量内任意两点都能互达 所以只要强联通分量内有一点是 那么其它点也都会是 按 ...

  9. POJ 3180 The cow Prom Tarjan基础题

    题目用google翻译实在看不懂 其实题目意思如下 给一个有向图,求点个数大于1的强联通分量个数 #include<cstdio> #include<algorithm> #i ...

随机推荐

  1. 一天搞定HTML----标签类型与类型转换05

    标签类型: 标签只有两类:行内元素和块元素 行内元素:内容撑开宽高 块元素:默认独占一行 注意: 在使用display时,会遇到一种inline-block类型的标签.这种标签不属于标签的分类. 1. ...

  2. Java IO流之普通文件流和随机读写流区别

    普通文件流和随机读写流区别 普通文件流:http://blog.csdn.net/baidu_37107022/article/details/71056011 FileInputStream和Fil ...

  3. 基于Python + requests 的web接口自动化测试框架

    之前采用JMeter进行接口测试,每次给带新人进行培训比较麻烦,干脆用python实现,将代码和用例分离,易于维护. 项目背景 公司的软件采用B/S架构,进行数据存储.分析.管理 工具选择 pytho ...

  4. VR全景,让VR不再是“空中楼阁“——智慧城市常诚

    VR的风口来了又走,而VR技术的支持者却始终在探索VR在各个领域的应用.最近,有业内专家表示,VR给带来的真正好处是,容易让人产生同理心,但同理心究竟能帮助我们做什么呢? 我第一次见到挪威建筑师Haa ...

  5. cpp(第十章)

    1. const class & func(const class &) const { do something.. } 第一个const返回后的类不允许被赋值,第二个const不允 ...

  6. 仿flash轮播

    <!DOCTYPE html><html> <head> <meta charset="utf-8" /> <title> ...

  7. Thinkphp 3.0-3.1版代码执行漏洞

    近日360库带计划中播报的ThinkPHP扩展类库的漏洞已经查明原因:系官方扩展模式中的Lite精简模式中存在可能的漏洞(原先核心更新安全的时候 并没有更新模式扩展部分,现已更新).对于使用标准模式或 ...

  8. iter迭代器的应用

    迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束. 用户不用关心迭代器的内部结构,仅需通过next方法不断去读取下一个内容 不能随机访问任意一个内容,只 ...

  9. Vue 爬坑之路(二)—— 组件之间的数据传递

    Vue 的组件作用域都是孤立的,不允许在子组件的模板内直接引用父组件的数据.必须使用特定的方法才能实现组件之间的数据传递. 首先用 vue-cli 创建一个项目,其中 App.vue 是父组件,com ...

  10. mysql字符编码设置

    1.显示当前编码信息 mysql>show variables like '%character%' +--------------------------+------------------ ...