题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1513

题意:

  给你一个字符串s,你可以在s中的任意位置添加任意字符,问你将s变成一个回文串最少需要添加字符的个数。

题解1(LCS):

  很神奇的做法。

  先求s和s的反串的LCS,也就是原串中已经满足回文性质的字符个数。

  然后要变成回文串的话,只需要为剩下的每个落单的字符,相应地插入一个和它相同的字符即可。

  所以答案是:s.size()-LCS(s,rev(s))

  另外,求LCS时只会用到lcs[i-1][j-1],lcs[i-1][j],lcs[i][j-1],因为空间不够,改为滚动数组,将第一维[MAX_N]变为[2]。

题解2(记忆化搜索):

  做法是对的,但是空间占用太大,会MLE。

  dfs(x,y)表示让s串中[x,y]这个区间变为回文串的花费。

  两种情况:

    (1)s[x]==s[y]:

        s[x]和s[y]已经配对,所以return dfs(x+1,y-1);

    (2)s[x]!=s[y]:

        有两种解决办法:

          1.让[x+1,y]变为回文串,然后在y的右边添加一个字符等于s[x]。

          2.让[x,y-1]变为回文串,然后在x的左边添加一个字符等于s[y]。

        所以return min(dfs(x+1,y),dfs(x,y-1))+1;

  判断dfs结束边界:

    (1)dp[x][y]!=-1:之前已经算过了,那就不用再算一遍了,return dp[x][y]。

    (2)x==y: return 0;

    (3)x+1==y: 如果s[x]==s[y],return 0;如果s[x]!=s[y],return 1;

  另外,每次dfs算出新的dp时,及时保存到dp数组中。

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define MAX_N 5005 using namespace std; int n;
int dp[][MAX_N];
string s; int lcs(string a,string b)
{
memset(dp,,sizeof(dp));
for(int i=;i<=a.size();i++)
{
for(int j=;j<=b.size();j++)
{
if(a[i-]==b[j-]) dp[i&][j]=dp[(i-)&][j-]+;
else dp[i&][j]=max(dp[(i-)&][j],dp[i&][j-]);
}
}
return dp[a.size()&][b.size()];
} int palindrome(string s)
{
string rev=s;
reverse(rev.begin(),rev.end());
return s.size()-lcs(s,rev);
} int main()
{
while(cin>>n>>s)
{
cout<<palindrome(s)<<endl;
}
}

没AC Code:

 // dp[x][y] = min num of chars appended to s
// dp[x][x] = 0
//
// 1) s[i] != s[j]:
// dp[x][x+1] = 1
// dp[x][y] = min(dp[x+1][y], dp[x][y-1]) + 1
//
// 2) s[i] == s[j]
// dp[x][y] = dp[x+1][y-1] #include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 5005 using namespace std; int n;
int dp[MAX_N][MAX_N];
string s; int dfs(int x,int y)
{
if(dp[x][y]!=-) return dp[x][y];
if(x==y) return dp[x][y]=;
if(x+==y) return dp[x][y]=(s[x]==s[y]?:);
if(s[x]==s[y]) return dp[x][y]=dfs(x+,y-);
return dp[x][y]=min(dfs(x+,y),dfs(x,y-))+;
} int main()
{
while(cin>>n>>s)
{
memset(dp,-,sizeof(dp));
cout<<dfs(,s.size()-)<<endl;
}
}

HDU 1513 Palindrome:LCS(最长公共子序列)or 记忆化搜索的更多相关文章

  1. HDU 1513 Palindrome(最长公共子序列)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 解题报告:给定一个长度为n的字符串,在这个字符串中插入最少的字符使得这个字符串成为回文串,求这个 ...

  2. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  3. POJ 1458 Common Subsequence(LCS最长公共子序列)

    POJ 1458 Common Subsequence(LCS最长公共子序列)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?c ...

  4. 动态规划模板2|LCS最长公共子序列

    LCS最长公共子序列 模板代码: #include <iostream> #include <string.h> #include <string> using n ...

  5. LCS 最长公共子序列

    区别最长公共子串(连续) ''' LCS 最长公共子序列 ''' def LCS_len(x, y): m = len(x) n = len(y) dp = [[0] * (n + 1) for i ...

  6. HDU 1159 Common Subsequence 最长公共子序列

    HDU 1159 Common Subsequence 最长公共子序列 题意 给你两个字符串,求出这两个字符串的最长公共子序列,这里的子序列不一定是连续的,只要满足前后关系就可以. 解题思路 这个当然 ...

  7. hdu 1159 Common Subsequence(LCS最长公共子序列)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  8. LCS最长公共子序列~dp学习~4

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 Palindrome Time Limit: 4000/2000 MS (Java/Others ...

  9. LCS最长公共子序列(最优线性时间O(n))

    这篇日志主要为了记录这几天的学习成果. 最长公共子序列根据要不要求子序列连续分两种情况. 只考虑两个串的情况,假设两个串长度均为n. 一,子序列不要求连续. (1)动态规划(O(n*n)) (转自:h ...

  10. LCS最长公共子序列

    问题:最长公共子序列不要求所求得的字符串在所给字符串中是连续的,如输入两个字符串ABCBDAB和BDCABA,字符串BCBA和BDAB都是他们的公共最长子序列 该问题属于动态规划问题 解答:设序列X= ...

随机推荐

  1. alive pdf 基本用法

    alive pdf 基本用法 <?xml version="1.0" encoding="utf-8"?> <s:WindowedApplic ...

  2. webpack的Hot Module Replacement运行机制

    使用webpack打包,难免会使用Hot Module Replacement功能,该功能能够实现修改.添加或删除前端页面中的模块代码,而且是在页面不刷新的前提下.它究竟是怎么运作的呢?本文主要从调试 ...

  3. 在Apworks数据服务中使用基于Entity Framework Core的仓储(Repository)实现

    <在ASP.NET Core中使用Apworks快速开发数据服务>一文中,我介绍了如何使用Apworks框架的数据服务来快速构建用于查询和管理数据模型的RESTful API,通过该文的介 ...

  4. 如何在java中用Arraylist中实现冒泡排序的问题

    众所周知,冒泡排序法在一般数组中就3步, if(a<b){ temp=a; a=b; b=temp; } 然而,在集合中就不是简单的交换一下了,因为交换之后,必须保证新的值被重新设置到集合中去. ...

  5. 不同浏览器创建 ajax XMLHTTPRequest对象的方法及兼容性问题总结

    XMLHttpRequest 对象是AJAX功能的核心,要开发AJAX程序必须从了解XMLHttpRequest 对象开始. 了解XMLHttpRequest 对象就先从创建XMLHttpReques ...

  6. 英语曰曰曰No.523

    ---恢复内容开始--- [一句话新闻] The iPhone's 10th Anniversary:Can Apple Revive Its iPhone Sales ? 1.A look back ...

  7. Spring NamedParameterJdbcTemplate命名参数查询条件封装, NamedParameterJdbcTemplate查询封装

    Spring NamedParameterJdbcTemplate命名参数查询条件封装, NamedParameterJdbcTemplate查询封装 >>>>>> ...

  8. javascript数组(1) ——sort的工作原理及其他数组排序方法

    一说到数组排序,最直观的想法就是用sort啊! 请问不用使用sort方法还可以使用什么方法进行数组排序? 比如 :  快速排序法.合并排序法.冒泡排序法.选择排序法.插入排序法.布尔排序法.交互排序. ...

  9. HDU1035 Robot Motion

    Problem Description A robot has been programmed to follow the instructions in its path. Instructions ...

  10. Hibernate 中 简便proxool连接池配置

    资源&文档 请百度云盘下载:http://pan.baidu.com/s/1hsmVVBu     提取码y966