Hadoop业务的大致开发流程以及Flume在业务中的地位:



从Hadoop的业务开发流程图中可以看出,在大数据的业务处理过程中,对于数据的采集是十分重要的一步,也是不可避免的一步,从而引出我们本文的主角—Flume。


Flume概念



flume是分布式的日志收集系统,它将各个服务器中的数据收集起来并送到指定的地方去,比如说送到图中的HDFS,简单来说flume就是收集日志的。


Event概念

在这里有必要先介绍一下flume中event的相关概念:flume的核心是把数据从数据源(source)收集过来,在将收集到的数据送到指定的目的地(sink)。为了保证输送的过程一定成功,在送到目的地(sink)之前,会先缓存数据(channel),待数据真正到达目的地(sink)后,flume在删除自己缓存的数据。

在整个数据的传输的过程中,流动的是event,即事务保证是在event级别进行的。那么什么是event呢?—–event将传输的数据进行封装,是flume传输数据的基本单位,如果是文本文件,通常是一行记录,event也是事务的基本单位。event从source,流向channel,再到sink,本身为一个字节数组,并可携带headers(头信息)信息。event代表着一个数据的最小完整单元,从外部数据源来,向外部的目的地去。

为了方便大家理解,给出一张event的数据流向图:

一个完整的event包括:event headers、event body、event信息(即文本文件中的单行记录),其中event信息就是flume收集到的日记记录。


Flume架构

flume之所以这么神奇,是源于它自身的一个设计,这个设计就是agent,agent本身是一个Java进程,运行在日志收集节点—所谓日志收集节点就是服务器节点。

agent里面包含3个核心的组件:source—->channel—–>sink,类似生产者、仓库、消费者的架构。

  • source:source组件是专门用来收集数据的,可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy、自定义。
  • channel:source组件把数据收集来以后,临时存放在channel中,即channel组件在agent中是专门用来存放临时数据的——对采集到的数据进行简单的缓存,可以存放在memory、jdbc、file等等。
  • sink:sink组件是用于把数据发送到目的地的组件,目的地包括hdfs、logger、avro、thrift、ipc、file、null、Hbase、solr、自定义。

Flume运行机制

flume的核心就是一个agent,这个agent对外有两个进行交互的地方,一个是接受数据的输入——source,一个是数据的输出sink,sink负责将数据发送到外部指定的目的地。source接收到数据之后,将数据发送给channel,chanel作为一个数据缓冲区会临时存放这些数据,随后sink会将channel中的数据发送到指定的地方—-例如HDFS等,注意:只有在sink将channel中的数据成功发送出去之后,channel才会将临时数据进行删除,这种机制保证了数据传输的可靠性与安全性。


Flume广义用法

flume之所以这么神奇—-其原因也在于flume可以支持多级flume的agent,即flume可以前后相继,例如sink可以将数据写到下一个agent的source中,这样的话就可以连成串了,可以整体处理了。flume还支持扇入(fan-in)、扇出(fan-out)。所谓扇入就是source可以接受多个输入,所谓扇出就是sink可以将数据输出多个目的地destination中。


安装配置

1、安装

下载地址:http://mirrors.hust.edu.cn/apache/flume/1.7.0/

2、解压缩

tar -zxvf apache-flume-1.7.0-bin.tar.gz -C /data
mv apache-flume-1.7.0-bin flume

3、配置环境变量

vim /etc/profile

export FLUME_HOME=/data/flume
export PATH=$PATH:$FLUME_HOME/bin source /etc/profile

4、验证是否安装成功

[root@iZwz9b62gfdv0s2e67yo8kZ /]# flume-ng version
Flume 1.7.0
Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git
Revision: 511d868555dd4d16e6ce4fedc72c2d1454546707
Compiled by bessbd on Wed Oct 12 20:51:10 CEST 2016
From source with checksum 0d21b3ffdc55a07e1d08875872c00523

链接相关

大数据进阶计划

http://wangxin123.com/2017/02/18/大数据进阶计划/

Flume下载地址

http://mirrors.hust.edu.cn/apache/flume/1.7.0/

Flume简介及安装的更多相关文章

  1. Apache Flume简介及安装部署

    概述 Flume 是 Cloudera 提供的一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的软件. Flume 的核心是把数据从数据源(source)收集过来,再将收集到的数据送到指定的目 ...

  2. Flume简介与使用(一)——Flume安装与配置

    Flume简介与使用(一)——Flume安装与配置 Flume简介 Flume是一个分布式的.可靠的.实用的服务——从不同的数据源高效的采集.整合.移动海量数据. 分布式:可以多台机器同时运行采集数据 ...

  3. Flume简介与使用(二)——Thrift Source采集数据

    Flume简介与使用(二)——Thrift Source采集数据 继上一篇安装Flume后,本篇将介绍如何使用Thrift Source采集数据. Thrift是Google开发的用于跨语言RPC通信 ...

  4. Flume 简介及基本使用

    一.Flume简介 Apache Flume是一个分布式,高可用的数据收集系统.它可以从不同的数据源收集数据,经过聚合后发送到存储系统中,通常用于日志数据的收集.Flume 分为 NG 和 OG (1 ...

  5. 【Flume】Flume基础之安装与使用

    1.Flume简介 ​ (1) Flume提供一个分布式的,可靠的,对大数据量的日志进行高效收集.聚集.移动的服务,Flume只能在Unix环境下运行. ​ (2) Flume基于流式架构,容错性强, ...

  6. 入门大数据---Flume 简介及基本使用

    一.Flume简介 Apache Flume 是一个分布式,高可用的数据收集系统.它可以从不同的数据源收集数据,经过聚合后发送到存储系统中,通常用于日志数据的收集.Flume 分为 NG 和 OG ( ...

  7. java大数据最全课程学习笔记(1)--Hadoop简介和安装及伪分布式

    Hadoop简介和安装及伪分布式 大数据概念 大数据概论 大数据(Big Data): 指无法在一定时间范围内用常规软件工具进行捕捉,管理和处理的数据集合,是需要新处理模式才能具有更强的决策力,洞察发 ...

  8. Node.js 教程 01 - 简介、安装及配置

    系列目录: Node.js 教程 01 - 简介.安装及配置 Node.js 教程 02 - 经典的Hello World Node.js 教程 03 - 创建HTTP服务器 Node.js 教程 0 ...

  9. Java Gradle入门指南之简介、安装与任务管理

        这是一篇Java Gradle入门级的随笔,主要介绍Gradle的安装与基本语法,这些内容是理解和创建build.gradle的基础,关于Gradle各种插件的使用将会在其他随笔中介绍.    ...

随机推荐

  1. laravel安装插件laravel-ide-helper

    1.插件位置laravel-ide-helper https://github.com/barryvdh/laravel-ide-helper 2.首先改变镜像源为国内的镜像源 P { margin- ...

  2. AES算法,DES算法,RSA算法JAVA实现

    1     AES算法 1.1    算法描述 1.1.1      设计思想 Rijndael密码的设计力求满足以下3条标准: ① 抵抗所有已知的攻击. ② 在多个平台上速度快,编码紧凑. ③ 设计 ...

  3. Struts2中there is no action mapped for acion name (/XXXXX)

    这里的问题出在配置struts.xml中,去掉配置中 namespace="/"属性 即可解决.不同的调用action的方式对namespace="/"属性有的 ...

  4. jenkins+webhook+docker做持续集成

    简介:我们现在都流行把项目封装成docker的镜像,不过实际用的时候就会发现很麻烦,我们每次更改代码了以后都要打包成docker容器 ,事实证明项目比较多的时候真的会让人崩溃,我这边用spring c ...

  5. 基于51单片机IIC通信的PCF8591学习笔记

    引言 PCF8591 是单电源,低功耗8 位CMOS 数据采集器件,具有4 个模拟输入.一个输出和一个串行I2C 总线接口.3 个地址引脚A0.A1 和A2 用于编程硬件地址,允许将最多8 个器件连接 ...

  6. CocoaAsyncSocket + Protobuf 处理粘包和拆包问题

    在上一篇文章<iOS之ProtocolBuffer搭建和示例demo>分享环境的搭建, 我们和服务器进行IM通讯用了github有名的框架CocoaAsynSocket, 然后和服务器之间 ...

  7. C#,VB.NET 如何将Excel转换为Text

    在工作中,有时我们需要转换文档的格式,之前已经跟大家介绍过了如何将Excel转换为PDF.今天将与大家分享如何将Excel转换为Text.这次我使用的依然是免费版的Spire.XLS for .NET ...

  8. storm kafkaSpout 踩坑问题记录! offset问题!

    整合kafka和storm例子网上很多,自行查找 问题描述: kafka是之前早就搭建好的,新建的storm集群要消费kafka的主题,由于kafka中已经记录了很多消息,storm消费时从最开始消费 ...

  9. git提交如何忽略某些文件

    在使用git对项目进行版本管理的时候,我们总有一些不需要提交到版本库里的文件和文件夹,这个时候我们就需要让git自动忽略掉一下文件. 使用.gitignore忽略文件 为了让git忽略指定的文件和文件 ...

  10. HashMap负载因子

    下面是HashMap的一个构造函数,两个参数initialCapacity,loadFactor 这关系HashMap的迭代性能. /** * Constructs an empty <tt&g ...