增强学习 | Q-Learning
“价值不是由一次成功决定的,而是在长期的进取中体现”
上文介绍了描述能力更强的多臂赌博机模型,即通过多台机器的方式对环境变量建模,选择动作策略时考虑时序累积奖赏的影响。虽然多臂赌博机模型中引入了价值的概念,但方法在建模过程中本质上是以策略为优化目标,因此又常被归为基于策略的增强学习方法。
此外,增强学习方法还有基于价值以及基于模型两类主要方法。本文介绍第二类,先从描述价值目标的Q函数开始,它也常称之为Q-Learning方法。
最简单的Q函数可用“状态-动作”二维表(Q-Table)描述,其中行表示状态s,列表示动作a,矩阵中的值表示特定状态下执行某动作的回报值为r(s,a)。智能体Agent通过不断更新并查找该表,找到当前状态回报最高的动作执行。
为避免Q-Table陷入局部最优,即使得当前回报最高的结果能达到全局最优,需要通过训练获得累积回报,迭代更新Q-Table,使之能指导长期期望价值最大化的动作执行。
为便于计算,将Q-Table表示为Bellman递推等式,拆分为当前回报和未来最大回报的和,即Q(s,a)=r(s, a)+b(max(Q(s’,a’))),其中s’表示s状态在a行为作用下的下一状态,而a’为s’状态后所有可能的行为,b为价值累积过程中的打折系数,决定了未来回报相对于当前回报的重要程度。
同样的,也可使用神经网络对Q函数进行建模,其输入为Agent环境状态,输出为使价值最大化的Agent动作。训练过程中,初始Q(s,a)为0,训练中Agent每行动一次,通过Bellman等式计算Q’(s,a),优化目标是使得Agent根据Q函数执行动作能获得训练过程中的最大价值回报,即Q(s,a)与Q’(s,a)的差异最小。
例如,OpenAI gym的FrozenLake问题,假设人要穿过一个4x4方格的冰湖(从S到G),有冰的地方(F)可以行走,无冰的洞(H)会掉入湖中。使用增强学习建模,其状态空间为4x4的方格空间,动作为“上下左右”的移动,达到目标的回报价值为1,掉入洞中的回报价值为-1。
分别使用Q-Table和神经网络Q函数对FrozenLake问题进行建模求解,可以发现神经网络Q函数的学习方法,在同样实验迭代次数下可以探索出更多的“可行路径”。
对代码实现和实验效果感兴趣的朋友,可在数据小虾米公众号后台回复“代码”,获得源码地址。
数据科学武林风起云涌,
随数据小虾米共闯江湖~
增强学习 | Q-Learning的更多相关文章
- 增强学习(五)----- 时间差分学习(Q learning, Sarsa learning)
接下来我们回顾一下动态规划算法(DP)和蒙特卡罗方法(MC)的特点,对于动态规划算法有如下特性: 需要环境模型,即状态转移概率\(P_{sa}\) 状态值函数的估计是自举的(bootstrapping ...
- 增强学习Reinforcement Learning经典算法梳理3:TD方法
转自:http://blog.csdn.net/songrotek/article/details/51382759 博客地址:http://blog.csdn.net/songrotek/artic ...
- 增强学习(Reinforcement Learning and Control)
增强学习(Reinforcement Learning and Control) [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行 ...
- 强化学习9-Deep Q Learning
之前讲到Sarsa和Q Learning都不太适合解决大规模问题,为什么呢? 因为传统的强化学习都有一张Q表,这张Q表记录了每个状态下,每个动作的q值,但是现实问题往往极其复杂,其状态非常多,甚至是连 ...
- 深度增强学习--Deep Q Network
从这里开始换个游戏演示,cartpole游戏 Deep Q Network 实例代码 import sys import gym import pylab import random import n ...
- 强化学习_Deep Q Learning(DQN)_代码解析
Deep Q Learning 使用gym的CartPole作为环境,使用QDN解决离散动作空间的问题. 一.导入需要的包和定义超参数 import tensorflow as tf import n ...
- 马里奥AI实现方式探索 ——神经网络+增强学习
[TOC] 马里奥AI实现方式探索 --神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后也已经典 ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)
1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...
- 常用增强学习实验环境 II (ViZDoom, Roboschool, TensorFlow Agents, ELF, Coach等) (转载)
原文链接:http://blog.csdn.net/jinzhuojun/article/details/78508203 前段时间Nature上发表的升级版Alpha Go - AlphaGo Ze ...
随机推荐
- 高效工作的秘诀——Doit.im使用总结报告
从上次购买doit.im pro账户到现在已经快一年了,从摸索到现在的熟悉,目前这款软件已经成为我工作生活中最为重要的效率工具,在此之前也用过很多软件进行时间管理,综合起来评价,doit应该算是最棒的 ...
- sublime text3 支持终端打开文件
sudo ln -s /Applications/Sublime\ Text.app/Contents/SharedSupport/bin/subl /usr/local/bin/subl
- 用app.net Core搞点多国语言网站
Asp.net Core 中文文档很少,你可以看英文的,不过英文的也是说的有点乱.这篇文章是干货. 1. 配置好你的WebApplication,使他可以支持国际化语言,修改文档Startup.cs ...
- PHP 关于timezone问题
Warning: date(): It is not safe to rely on the system's timezone settings. You are *required* to use ...
- find命令之xargs,exec
一,find命令之xargs: 在 使用 find命令的-exec选项处理匹配到的文件时, find命令将所有匹配到的文件一起传递给exec执行.但有些系统对能够传递给exec的命 令长度有限制,这样 ...
- Git基础-打标签
打标签 同大多数 VCS 一样,Git 也可以对某一时间点上的版本打上标签.人们在发布某个软件版本(比如 v1.0 等等)的时候,经常这么做.本节我们一起来学习如何列出所有可用的标签,如何新建标签,以 ...
- 简单物联网:外网访问内网路由器下树莓派Flask服务器
最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...
- 一些java考过的测试题和自己制作模拟服务端和客户端
媒体 1,java环境变量: PATH: .;%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin; CLASSPATH: .;%JAVA_HOME%\jre\lib\rt.jar ...
- Redis 学习之简介及安装
一.redis简介 Redis是一个开源的,先进的key-value存储.它通常被称为数据结构服务器,因为键可以包含字符串.哈希.链表.集合和有序集合. 支持的数据类型:string(字符串).lis ...
- 源码分析 Large-Margin Softmax Loss for Convolutional Neural Networks
作者在Caffe中引入了一个新层,一般情况在Caffe中引入一个新层需要修改caffe.proto,添加该层头文件*.hpp,CPU实现*.cpp,GPU实现*.cu,代码结果如下图所示: caffe ...