基准时间限制:2 秒 空间限制:131072 KB 
一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,先从左上走到右下,再从右下走到左上。第1遍时只能向下和向右走,第2遍时只能向上和向左走。两次如果经过同一个格子,则该格子的奖励只计算一次,求能够获得的最大价值。

 
例如:3 * 3的方格。
 
1 3 3
2 1 3
2 2 1
 
能够获得的最大价值为:17。1 -> 3 -> 3 -> 3 -> 1 -> 2 -> 2 -> 2 -> 1。其中起点和终点的奖励只计算1次。
 
Input
第1行:2个数M N,中间用空格分隔,为矩阵的大小。(2 <= M, N <= 200)
第2 - N + 1行:每行M个数,中间用空格隔开,对应格子中奖励的价值。(1 <= A[i,j] <= 10000)
Output
输出能够获得的最大价值。
Input示例
3 3
1 3 3
2 1 3
2 2 1
Output示例
17

思路:双线DP,看成两个人一起从(1,1)到(N,M),走的路径不能相同。

方法1:按照路径长度考虑,路径总长度:tot=x+y-1,dp[tot][x1][x2],两个人的横坐标x1,x2

 #include <bits/stdc++.h>
using namespace std;
int ans[][],dp[][][];
int main() {
int M,N;
scanf("%d %d",&M,&N);
for(int i=;i<=N;++i)
for(int j=;j<=M;++j)
scanf("%d",&ans[i][j]);
memset(dp,,sizeof(dp));
for(int tot=;tot<=N+M-;++tot)//路径长度
for(int i=;i<=N&&(<=tot+-i);++i)
for(int j=;j<=N&&(<=tot+-j);++j) {
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i-][j-]);
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i-][j]);
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i][j-]);
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i][j])+ans[i][tot+-i]+ans[j][tot+-j];
if(i==j) dp[tot][i][j]-=ans[i][tot+-i];
}
printf("%d\n",dp[N+M-][N][N]);
return ;
}

方法2:按照走到走了几步,总的步数:tot=x+y-2

 #include <bits/stdc++.h>
using namespace std;
int ans[][],dp[][][];
int main() {
int M,N;
scanf("%d %d",&M,&N);
for(int i=;i<=N;++i)
for(int j=;j<=M;++j)
scanf("%d",&ans[i][j]);
memset(dp,,sizeof(dp));
dp[][][]=ans[][];//一步都没走
for(int tot=;tot<=N+M-;++tot)//走了几步
for(int i=;i<=N&&(i-<=tot);++i)
for(int j=;j<=N&&(j-<=tot);++j) {
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i-][j-]);
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i-][j]);
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i][j-]);
dp[tot][i][j]=max(dp[tot][i][j],dp[tot-][i][j])+ans[i][tot+-i]+ans[j][tot+-j];
if(i==j) dp[tot][i][j]-=ans[i][tot+-i];
}
printf("%d\n",dp[N+M-][N][N]);
return ;
}

方法3:对方法2的优化,滚动数组

 #include <stdio.h>
#include <string.h>
int ans[][],dp[][][];
int max(int a, int b) {if(a>=b) return a;return b;}
int main() {
int M,N;
scanf("%d %d",&M,&N);
for(int i=;i<=N;++i)
for(int j=;j<=M;++j)
scanf("%d",&ans[i][j]);
memset(dp,,sizeof(dp));
dp[][][]=ans[][];//一步都没走
int dir=;
//tot->走了几步
for(int tot=;tot<=N+M-;++tot) {
dir=-dir;
for(int i=;i<=N&&(i-<=tot);++i)
for(int j=;j<=N&&(j-<=tot);++j) {
dp[dir][i][j]=max(dp[dir][i][j],dp[-dir][i-][j-]);
dp[dir][i][j]=max(dp[dir][i][j],dp[-dir][i-][j]);
dp[dir][i][j]=max(dp[dir][i][j],dp[-dir][i][j-]);
dp[dir][i][j]=max(dp[dir][i][j],dp[-dir][i][j])+ans[i][tot+-i]+ans[j][tot+-j];
if(i==j) dp[dir][i][j]-=ans[i][tot+-i];
}
}
printf("%d\n",dp[dir][N][N]);
return ;
}

51Nod 1084 矩阵取数问题 V2 双线程DP 滚动数组优化的更多相关文章

  1. 51Nod 1084 矩阵取数问题 V2 —— 最小费用最大流 or 多线程DP

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1084 1084 矩阵取数问题 V2  基准时间限制:2 秒 空 ...

  2. 1084 矩阵取数问题 V2

    1084 矩阵取数问题 V2 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,先从左上走到右下 ...

  3. 51Nod 1084:矩阵取数问题 V2(多维DP)

    1084 矩阵取数问题 V2  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励 ...

  4. 51nod1084 矩阵取数问题 V2

    O(n4)->O(n3)妈呀为什么跑这么慢woc #include<cstdio> #include<cstring> #include<cctype> #i ...

  5. 51Nod 1083 矩阵取数问题(矩阵取数dp,基础题)

    1083 矩阵取数问题 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下 ...

  6. [Swust OJ 1084]--Mzx0821月赛系列之情书(双线程dp)

    题目链接:http://acm.swust.edu.cn/problem/1084/ Time limit(ms): 1000 Memory limit(kb): 65535   Descriptio ...

  7. 51nod 1411 矩阵取数问题 V3

    给定一个m行n列的矩阵,你可以从任意位置开始取数,到达任意位置都可以结束,每次可以走到的数是当前这个数上下左右的邻居之一,唯一的限制是每个位置只能经过一次,也就是说你的路径不自交.所经过的数的总作为你 ...

  8. 51nod动态规划-----矩阵取数

    一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下向右走,求能够获得的最大价值. 例如:3 * 3的方格. 1 3 3 2 1 3 2 2 1 能够获得的最 ...

  9. 51nod 1083 矩阵取数问题【动态规划】

    一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下向右走,求能够获得的最大价值. 例如:3 * 3的方格. 1 3 3 2 1 3 2 2 1 能够获得的最 ...

随机推荐

  1. Vue源码后记-其余内置指令(2)

    -- 指令这个讲起来还有点复杂,先把html弄上来: <body> <div id='app'> <div v-if="vIfIter" v-bind ...

  2. 使用jQuery中trigger()方法自动触发事件

    一.常用事件 在页面加载完成时  自动触发input的点击事件,在移动端可以实现自动弹出输入法,获得焦点 $("input").trigger("click") ...

  3. win10 安装Node.js 报错:2503

    解决方法: 使用管理员打开CMD

  4. java语言在某个数组中查找某个字符出现的次数

    package com.llh.demo; import java.util.Scanner; /** * * @author llh * */ public class Test { /* * 在某 ...

  5. hdu 4717 Tree2cycle(树形DP)

    Tree2cycle Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Tot ...

  6. css基础语法二(常用文本与背景属性)

    [CSS常用文本属性] 1. 字体.字号类:① font-weight: 字体粗细. bold-加粗.normal-正常.lighter-细体 也可以使用100-900数值,400表示normal,7 ...

  7. YSlow---基于firebug的插件 ,用于网站页面性能的分析

    YSlow有什么用? YSlow可以对网站的页面进行分析,并告诉你为了提高网站性能,如何基于某些规则而进行优化. YSlow可以分析任何网站,并为每一个规则产生一个整体报告,如果页面可以进行优化,则Y ...

  8. Unity 游戏框架搭建 (十九) 简易对象池

    在Unity中我们经常会用到对象池,使用对象池无非就是解决两个问题: 一是减少new时候寻址造成的消耗,该消耗的原因是内存碎片. 二是减少Object.Instantiate时内部进行序列化和反序列化 ...

  9. 【2】hadoop搭建准备软件

    准备一:VMware虚拟工具: 链接:http://pan.baidu.com/s/1o7F4A6I 密码:w5ti 准备二:CentOS6.8虚拟机(64位):如果64位不允许安装,可能是电脑设置问 ...

  10. 掌握numpy(四)

    数组的累加(拼接) 在前面讲了使用切片方法能够对数组进行切分,使用copy对切片的数组进行复制,那么数组该如何拼接呢? a1 = np.full((2,3),1)#填充数组 a2 = np.full( ...