DFS和BFS(无向图)Java实现
package practice; import java.util.Iterator;
import java.util.Stack; import edu.princeton.cs.algs4.*; public class TestMain {
public static void main(String[] args) {
Graph a = new Graph(6);
a.addEdge(2, 4);
a.addEdge(2, 3);
a.addEdge(1, 2);
a.addEdge(0, 5);
a.addEdge(0, 1);
a.addEdge(0, 2);
a.addEdge(3, 4);
a.addEdge(3, 5);
System.out.println(a); DisposeMap df = new DisposeMap(a);
/*df.dfs(0);
System.out.println(df.hasPathTo(1));
System.out.println(df.hasPathTo(2));
Stack<Integer> aStack = df.pathTo(1);
while (!aStack.isEmpty()) {
System.out.print(aStack.pop() + "->");
}
System.out.println("end");*/ df.bfs(0);
for (int i = 0; i < 6; i++) {
System.out.println(df.marked(i));
}
Stack<Integer> aStack = df.pathTo(4);
while (!aStack.isEmpty()) {
System.out.print(aStack.pop() + "->");
}
System.out.println("end");
}
} /*
* 图处理dispose
*/
class DisposeMap {
private boolean[] marked; //将已经搜素过的节点储存为true
private int count = 0;
private Graph G;
private int s; //起点
private int[] edgeTo; //edgeTo[w] = v,w为图中的节点,v为它的父节点 public DisposeMap(Graph G) {
this.G = G; marked = new boolean[G.V];
edgeTo = new int[G.V];
for (int i = 0; i < marked.length; i++) {
marked[i] = false;
}
}
/*
* 深度优先搜索,储存以s为起点所能到达的所有点
*/
public void dfs(int s) {
marked[s] = true; count++;
System.out.println("Search" + s);
for (Integer b : G.adj(s)) { //搜索一个节点的相邻的第一个没有被标记过的节点
if (marked[b] == false) { //如果没有搜索过这个节点,就搜索它
edgeTo[b] = s;
dfs(b);
}
}
}
/*
* 广度优先搜索
*/
public void bfs(int s) {
edu.princeton.cs.algs4.Queue<Integer> queue = new Queue<Integer>();
queue.enqueue(s);
marked[s] = true; while (!queue.isEmpty()) {
Integer temp = queue.dequeue();
for (Integer b : G.adj(temp)) { //搜索一个节点的所有的相邻的节点
if (marked[b] == false) { //如果没有搜索过这个节点,就搜索它
queue.enqueue(b);
edgeTo[b] = temp;
marked[b] = true;
}
}
}
}
/*
* 查看某点是否被标记
*/
public boolean marked(int w) { return marked[w];}
/*
* 搜索了几个点
*/
public int count() { return count;}
/*
* 是否存在s到v的路径
*/
public boolean hasPathTo(int v) {
return marked(v);
}
/*
* s到v的路径,有则返回一个Stack,没有则返回null
*/
public Stack<Integer> pathTo(int v) {
Stack<Integer> a = new Stack<Integer>();
for (int i = v; i != s; i = edgeTo[i])
a.push(i);
a.push(s);
return a;
}
} /*
* 图
*/
class Graph {
Bag<Integer>[] graph; //这里使用背包的数组,邻借表
int V;
int E; public Graph(int V) {
this.V = V;
graph = (Bag<Integer>[]) new Bag[V];
for (int i = 0; i < graph.length; i++) {
graph[i] = (Bag<Integer>) new Bag();
}
}
/*
* 返回顶点数
*/
public int V() { return V;}
/*
* 返回边数
*/
public int E() { return E;}
/*
* 向图中添加一条边
*/
public void addEdge(int v, int w) {
graph[v].add(w);
graph[w].add(v);
E++;
}
/*
* 和v相邻的所有顶点
*/
public Iterable<Integer> adj(int v) {
return graph[v];
}
/*
* 计算v的度数
*/
public static int degree(Graph G, int v) {
int degree = 0;
for (Integer bag : G.graph[v]) degree++;
return degree;
}
@Override
public String toString() {
String s = V + " vertices, " + E + " edges\n";
for (int v = 0; v < V; v++) {
s += v + ": ";
for (Integer integer : this.adj(v)) {
s += integer + " ";
}
s += "\n";
}
return s;
}
} /*
* 背包
*/
class Bag<T> implements Iterable<T> {
Node first; private class Node {
T value;
Node next;
} public void add(T value) {
Node oldfirst = first;
first = new Node();
first.value = value;
first.next = oldfirst;
} public void delete(T value) { } @Override
public Iterator<T> iterator() {
return new BagIterator();
} private class BagIterator implements Iterator<T> {
Node node = first; @Override
public boolean hasNext() {
return node != null;
} @Override
public T next() {
T tempt = node.value;
node = node.next;
return tempt;
}
}
}
代码中的无向图
图的储存-邻接表示意图
DFS和BFS(无向图)Java实现的更多相关文章
- Java数据结构——图的DFS和BFS
1.图的DFS: 即Breadth First Search,深度优先搜索是从起始顶点开始,递归访问其所有邻近节点,比如A节点是其第一个邻近节点,而B节点又是A的一个邻近节点,则DFS访问A节点后再访 ...
- Clone Graph leetcode java(DFS and BFS 基础)
题目: Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. ...
- 数据结构(12) -- 图的邻接矩阵的DFS和BFS
//////////////////////////////////////////////////////// //图的邻接矩阵的DFS和BFS ////////////////////////// ...
- 数据结构(11) -- 邻接表存储图的DFS和BFS
/////////////////////////////////////////////////////////////// //图的邻接表表示法以及DFS和BFS //////////////// ...
- 数据结构基础(21) --DFS与BFS
DFS 从图中某个顶点V0 出发,访问此顶点,然后依次从V0的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和V0有路径相通的顶点都被访问到(使用堆栈). //使用邻接矩阵存储的无向图的深度 ...
- 判断图连通的三种方法——dfs,bfs,并查集
Description 如果无向图G每对顶点v和w都有从v到w的路径,那么称无向图G是连通的.现在给定一张无向图,判断它是否是连通的. Input 第一行有2个整数n和m(0 < n,m < ...
- 图的DFS与BFS遍历
一.图的基本概念 1.邻接点:对于无向图无v1 与v2之间有一条弧,则称v1与v2互为邻接点:对于有向图而言<v1,v2>代表有一条从v1到v2的弧,则称v2为v1的邻接点. 2.度:就是 ...
- 列出连通集(DFS及BFS遍历图) -- 数据结构
题目: 7-1 列出连通集 (30 分) 给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集.假设顶点从0到N−1编号.进行搜索时,假设我们总是从编号最小的顶点出发,按编号递 ...
- 图论相关知识(DFS、BFS、拓扑排序、最小代价生成树、最短路径)
图的存储 假设是n点m边的图: 邻接矩阵:很简单,但是遍历图的时间复杂度和空间复杂度都为n^2,不适合数据量大的情况 邻接表:略微复杂一丢丢,空间复杂度n+m,遍历图的时间复杂度为m,适用情况更广 前 ...
随机推荐
- 7.spark共享变量
spark共享变量 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 ...
- (转载) java:IO流学习小结
今天刚刚看完Java的io流操作,把主要的脉络看了一遍,不能保证以后使用时都能得心应手,但是最起码用到时知道有这么一个功能可以实现,下面对学习进行一下简单的总结: IO流主要用于硬板.内存.键盘等处理 ...
- ICMP--ping--Traceroute
ICMP经常被认为是IP层的一个组成部分.它传递差错报文以及其他需要注意的信息. ICMP报文通常被IP层或更高层协议TCP或UDP使用. 一些ICMP报文把差错报文返回给用户进程 ICMP报文是 ...
- [技术]浅谈c++ this指针
背景 matrix operator*=(const matrix &a){ *this=*this*a; return *this; } XXX:诶,你这个*this是什么啊,是指针吗 博主 ...
- Ubuntu系统的安装Sublime3
1.添加Sublime-text-3软件包的软件源 sudo add-apt-repository ppa:webupd8team/sublime-text-3 2.使用以下命令更新系统软件源 ...
- seajs的模块化开发--实践笔记
2017-04-02 SeaJS是一个遵循CMD规范的JavaScript模块加载框架,可以实现JavaScript的模块化开发及加载机制.有效的解决复杂项目中命名冲突.依赖.性能等问题. SeaJS ...
- JavaScript 开发总结(一)
数据类型:JavaScript定义的数据类型有字符串.数字.布尔.数组.对象.Null.Undefined,但typeof有区分可判别的数据分类是number.string.boolean.objec ...
- python学习===从一个数中分解出每个数字
题目:打印出所有的"水仙花数",所谓"水仙花数"是指一个三位数,其各位数字立方和等于该数本身.例如:153是一个"水仙花数",因为153=1 ...
- shiro
1 权限管理 1.1 什么是权限管理 基本上涉及到用户参与的系统都要进行权限管理,权限管理属于系统安全的范畴,权限管理实现对用户访问系统的控制,按照安全规则或者安全策略控制用户可以访问而且只能访问自己 ...
- vue.js初探:计算属性和methods
在vue.js中,计算属性和methods方法的函数相同时,两者的最终执行结果都是相同的.然而不同的是,计算属性是基于它的依赖缓存.计算属性只有在它的相关依赖发生改变时才会重新取值.这就意味着只要 m ...