YOLO官方框架使用C写的,性能杠杠的,YOLO算法,我就不做过多介绍了。先简单介绍一下这个框架如何使用。这里默认是yolo2,yolo1接近过时。
环境 推荐ubuntu 或者centos

YOLO是一个近实时的框架,在1核cpu下,对一张图片的识别大概在6s-12s之间,其实还是在没有缓存的环境下运行的,如果是在摄像头实时采集识别估计也能达到10s左右的处理速度。如果用GPU来处理,当然时间短很多了。在看官网的信息时,有些名词看不太懂,但号称在titanX 上的处理速度是每秒40-60张图片,识别精度为78.6% ;在coco 开发测试集上的voc 2007 上的识别精度为48.1%。这样看来,速度确实很快。

在https://www.youtube.com/上有yolo摄像头实时识别的视频,你可以上去搜索,对于国内的高墙,略表无奈。

1,YOLO原理
关于yolo论文相对复杂,要有足够的耐心去看。这里地址先贴出来:
https://arxiv.org/abs/1612.08242

2,yolo安装
1,安装预备库
      1)安装git 工具
                Yum install git
       2)安装 bunzip2
               yum install -y bzip2
       3 )  安装gcc
              yum install "gcc-c++.x86_64"

2,下载安装包

1)下载安装包并编译

git clone https://github.com/pjreddie/darknet
cd darknet
make

2)下载预训练的超参数,也是权重

wget https://pjreddie.com/media/files/yolo.weights

接下来,我们看一下目录:

3)执行预测

./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg

data目录下是图片,输出结果:

图片有点重复了,我们看到结果了:

检测到狗的概率为82%

检测到车的概率为28*,其实没有车

检测到kache的概率为64%

检测到自行车的概率为85%

当然概率高的是正确,概率低的确实没有

其实他会生成一张图片,并标识所识别到的物体

Predictions.png 就是生成预测图

我们看看图片:

至此,证明我们已经安装yolo成功了!

3,图片检测

1)单图片检测

单图片检测,我们的已经演示过了:

./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg

一般服务运行比较慢6s-12s,开启GPU会快速很多,会生成predictions.png,图中会标识出识别的物体。

dog.jpg 就是要检测的图片,可以换成其余的试试。

   2)多图片检测

./darknet detect cfg/yolo.cfg yolo.weights
layer filters size input output
conv x / x x -> x x
max x / x x -> x x
.......
conv x / x x1024 -> x x
detection
Loading weights from yolo.weights ...Done!
Enter Image Path:

多图片检测跟单图片检测是差不多的,只是会不断的提示你输入图片路径进行检测

你可以data/hourses.jpg,

检测完,他继续提示你继续输入图片路径:

终止输入:ctrl + c 就可以退出

3)设置检测的窗口的阈值

这个一般没有必要设置,默认阈值是在.25或者以上,当可以通过

-thresh  <val> 来设置,如果设置为0,则:

./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg -thresh 

结果为:

这是完全没有必要的。

4,tiny yolo

Tiny yolo 是更快的yolo模型,但是准确度很低下,可以慎重考虑使用,参考链接为:

https://pjreddie.com/darknet/imagenet/#reference

你可以试着去用tiny的权重voc集去测试一下:

wget https://pjreddie.com/media/files/tiny-yolo-voc.weights
./darknet detector test cfg/voc.data cfg/tiny-yolo-voc.cfg tiny-yolo-voc.weights data/dog.jpg

虽然精度差了,但是处理速度高度200张每秒

5,通过摄像头实时监测

通过摄像头实时监测识别,这样可以实时查看测试的结果是怎么样的,但是需要相应的设备来支持,硬件必须有摄像头,同时还要编译CUDA和OPENCV,可以执行以下的命令:

./darknet detector demo cfg/coco.data cfg/yolo.cfg yolo.weights

这样就会在展示每一帧上标识出识别的物体。

需要用openv连接到你电脑的摄像头上,摄像头是否能用不是很大问题;如果你有多个摄像头的话,就必须指定一个摄像头:-c <num>  默认为0 第一摄像头。

如果你有video文件,openCV能够读取video的话,那么可以:

./darknet detector demo cfg/coco.data cfg/yolo.cfg yolo.weights <video file>

可以动态监测,这里建议去翻一下墙,在youtube 看看yolo的视频。

参考地址:https://pjreddie.com/darknet/yolo/

论文地址 :https://arxiv.org/abs/1612.08242

推荐链接:http://blog.csdn.net/qq_14845119/article/details/53589282

YOLO 算法框架的使用一(初级)的更多相关文章

  1. yolo算法框架使用二

    6,voc数据集训练模型 1)下载数据集 官网提供一些voc数据,是基于2007年到2012年的,你可以通过以下地址下载到: wget https://pjreddie.com/media/files ...

  2. 第三十五节,目标检测之YOLO算法详解

    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object de ...

  3. 目标检测算法YOLO算法介绍

    YOLO算法(You Only Look Once) 比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19).基本思想是, ...

  4. 强化学习(十七) 基于模型的强化学习与Dyna算法框架

    在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Base ...

  5. [DeeplearningAI笔记]卷积神经网络3.1-3.5目标定位/特征点检测/目标检测/滑动窗口的卷积神经网络实现/YOLO算法

    4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1目标定位 对象定位localization和目标检测detection 判断图像中的对象是不是汽车--Image clas ...

  6. Python遗传和进化算法框架(一)Geatpy快速入门

    https://blog.csdn.net/qq_33353186/article/details/82014986 Geatpy是一个高性能的Python遗传算法库以及开放式进化算法框架,由华南理工 ...

  7. 知识图谱+Recorder︱中文知识图谱API与工具、科研机构与算法框架

    目录 分为两个部分,笔者看到的知识图谱在商业领域的应用,外加看到的一些算法框架与研究机构. 文章目录 @ 一.知识图谱商业应用 01 唯品金融大数据 02 PlantData知识图谱数据智能平台 03 ...

  8. 【58】目标检测之YOLO 算法

    YOLO 算法(Putting it together: YOLO algorithm) 你们已经学到对象检测算法的大部分组件了,在这个笔记里,我们会把所有组件组装在一起构成YOLO对象检测算法.   ...

  9. 7、滑动窗口套路算法框架——Go语言版

    前情提示:Go语言学习者.本文参考https://labuladong.gitee.io/algo,代码自己参考抒写,若有不妥之处,感谢指正 关于golang算法文章,为了便于下载和整理,都已开源放在 ...

随机推荐

  1. selenium python grid

    学习自动化一直都是在本机操作,感觉这样能够减少工作量确实很少.最近研究了一下分布式操作. 开始的想法是,我在一台机器上启动脚本,然后让脚本在不同机器的不同版本的浏览器上进行跑脚本. 需要准备的东西: ...

  2. 运维&网络知识(一)

    1. DNS 域名系统(Domain Name System),因特网上作为域名和IP地址映射的一个分布式数据库.

  3. python抓取zabbix图形,并发送邮件

    最近十九大非常烦,作为政府网站维护人员,简直是夜不能寐.各种局子看着你,内保局,公安部,360,天融信,华胜天成,中央工委,政治委员会... 360人员很傻X,作为安全公司,竟然不能抓到XX网站流量, ...

  4. win10 uwp 存放网络图片到本地

    有时候我们的网络很垃圾,我的的UWP要在第一次打开网络图片,就把图片存放到本地,下次可以从本地打开. 有时候用户使用的是流量网络,不能每次都联网下载. 我们不得在应用存放用户打开的图片. 这就是先把图 ...

  5. 三、Spring的面向切面

    Spring的面向切面 在应用开发中,有很多类似日志.安全和事务管理的功能.这些功能都有一个共同点,那就是很多个对象都需要这些功能.复用这些通用的功能的最简单的方法就是继承或者委托.但是当应用规模达到 ...

  6. 整理一批 国内外优秀设计团队 & 设计相关网站

    设计做不好,因为看得少!这里精心整理了一批国内外优秀设计团队的官网,以及同设计相关的网站.每个网站,我都浏览了一下,确保里面真的是有干货,并且保持一定的频率正常更新. [腾讯] 腾讯社交用户体验设计 ...

  7. 关于WSL(Windows上的Linux子系统)的介绍

    WSL,Windows Subsystem for Linux,就是之前的Bash on [Ubuntu on] Windows(嗯,微软改名部KPI++ 首先要说一句,其实Windows 10在一周 ...

  8. 启动报错 Unsupported major.minor version 51.0

    Unsupported major.minor version 51.0错误, 是使用jdk6启动jdk7编译的项目,更换jdk7就好了,或者用jdk6重新打包项目. 解决起来也很方便:打开excli ...

  9. CNCC2017梳理

    大牛云集的中国计算机大会:大会日程表:http://cncc.ccf.org.cn/cn/news/schedule_empty 早上的论坛可以在爱奇艺下载视频 下午的分论坛是多个同时进行的,我也只去 ...

  10. 教你用SVG画出一条龙

    先看demo,九十七度 其实使用svg画出这条龙很简单,关键不在于怎么使用svg,而在于你的美术功底,哈哈. 好吧,当然基础是不能忽略的,先看下这条龙的代码: <svg id="lon ...