转载自(http://www.geek521.com/?p=1423)

Mahout推荐算法分为以下几大类

GenericUserBasedRecommender

算法:

1.基于用户的相似度

2.相近的用户定义与数量

特点:

1.易于理解

2.用户数较少时计算速度快

GenericItemBasedRecommender

算法:

1.基于item的相似度

特点:

1.item较少时就算速度更快

2.当item的外部概念易于理解和获得是非常有用

SlopeOneRecommender(itemBased)

算法:

1基于SlopeOne算法(打分差异规则)

特点

速度快

需要预先计算

当item数目十分少了也很有效

需要限制diffs的存储数目否则内存增长太快

SVDRecommender (item-based)

算法

基于支持向量机(item的特征以向量表示,每个维度的评价值)

特点

需要预计算

推荐效果佳

KnnItemBasedRecommender (item-based)

类似于GenericUserBasedRecommender 中基于相似用户的实现(基于相似的item)

与GenericItemBasedRecommender 的主要区别是权重方式计算的不同(but, the weights are not the results of some similarity metric. Instead, the algorithm calculates the optimal set of weights to use between all pairs of items=>看的费劲)

TreeClusteringRecommender

算法

基于树形聚类的推荐算法

特点

用户数目少的时候非常合适

计算速度快

需要预先计算

基于模型的推荐算法、基于满意度得推荐算法(未实现)

Mahout中的数据输入

DataModel

以下包含

GenericDataModel

数据接口类 基于内存

内部使用FastByIDMap 保存PreferenceArray,在PreferenceArray内保存用户->Item的评价值

GenericBooleanPrefDataModel.

基于内存的数据接口类

但是无用户偏好值

使用FastByIDMap<FastIDSet>为用户或者Item保存相关的Item或者用户。

FileDataModel

基于文件的数据接口内,内部使用GenericDataModel 保存实际的用户评价数据

增加了压缩文件(.zip .gz)等文件类型的支持

支持动态更新(更新文件文件名必须保存为一定的格式 例如 foo.txt.gz 后续更新文件必须为foo.1.txt.gz)

查了以下代码 好像是自定义时间间隔后可以更新,但是好像是全部更新(以后看代码)

JDBCDataModel

基于数据库的数据接口 目前已经实现MySQLJDBCDataModel(支持MySQL 5.x)可以使用MysqlDataSource生成MySQLJDBCDataModel

注:0.7版本里面没有找到MySQLJDBCDataModel类多了一个MySQLJDBCIDMigrator

不知道关系如何

PlusAnonymousUserDataModel.

用于匿名用户推荐的数据类 将全部匿名用户视为一个用户(内部包装其他的DataModel类型)

Mahout中的相似度计算

主要按照基于User,基于Item等

GenericItemSimilarity包含内部类 GenericItemSimilarity.ItemItemSimilarity

GenericUserSimilarity包含内部类 GenericUserSimilarity.UserUserSimilarity

以内存方式保存相似度计算结果 使用FastByIDMap<FastByIDMap<Double>>保存计算结果

CachingItemSimilarity

CachingUserSimilarity

以cache方式保存相似度计算结果防止每次请求是重复计算

内部使用 Cache<LongPair,Double> similarityCache保存相似度

与 GenericUserSimilarity用法和区别暂时看不懂

Mathout中实现的基于不同算法相似度度量的:

PearsonCorrelationSimilarity 皮尔逊距离

EuclideanDistanceSimilarity 欧几里德距离

CosineMeasureSimilarity   余弦距离(0.7变成了 UncenteredCosineSimilarity

SpearmanCorrelationSimilarity 斯皮尔曼等级相关

TanimotoCoefficientSimilarity 谷本相关系数

LogLikelihoodSimilarity 一般好于TanimotoCoefficientSimilarity(不懂)

CityBlockSimilarity基于曼哈顿距离

相似度使用的典型用法

UserSimilarity similarity = new CachingUserSimilarity(

new SpearmanCorrelationSimilarity(model), model);

对缺失数据的处理

PreferenceInferrer 数据丢失或者数据太少时可能用到 具体实现有 AveragingPreferenceInferrer 以平均值填充缺失数据

一般来说PreferenceInferrer除了增加计算量对推荐结果无任何影响(缺失值根据已有数据得出)所以一般只用于研究领域。

聚类的相似度

ClusterSimilarity

聚类的相似度用于两个不同的聚类之间的距离(类似坐标系内的距离)

目前聚类之间的距离计算只包含以下两个实现(暂时没有更好的实现算法)

NearestNeighborClusterSimilarity  计算两个聚类中所有项距离中的最小距离

FarthestNeighborClusterSimilarity  计算两个聚类中所有项距离中的最大距离

Mahout推荐算法基础的更多相关文章

  1. Mahout推荐算法API详解

    转载自:http://blog.fens.me/mahout-recommendation-api/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, ...

  2. 转】Mahout推荐算法API详解

    原博文出自于: http://blog.fens.me/mahout-recommendation-api/ 感谢! Posted: Oct 21, 2013 Tags: itemCFknnMahou ...

  3. [转]Mahout推荐算法API详解

    Mahout推荐算法API详解 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeepe ...

  4. Mahout推荐算法之SlopOne

    Mahout推荐算法之SlopOne 一.       算法原理 有别于基于用户的协同过滤和基于item的协同过滤,SlopeOne采用简单的线性模型估计用户对item的评分.如下图,估计UserB对 ...

  5. Mahout推荐算法API具体解释【一起学Mahout】

    阅读导读: 1.mahout单机内存算法实现和分布式算法实现分别存在哪些问题? 2.算法评判标准有哪些? 3.什么会影响算法的评分? 1. Mahout推荐算法介绍 Mahout推荐算法,从数据处理能 ...

  6. Mahout推荐算法ItemBased

    Mahout推荐的ItemBased 一.   算法原理 (一)    基本的 下面的例子,参见图评分矩阵:表现user,归类为item. 图(1) 该算法的原理: 1.  计算Item之间的相似度. ...

  7. Mahout推荐算法之ItemBased

    Mahout推荐之ItemBased 一.   算法原理 (一)    基本原理 如下图评分矩阵所示:行为user,列为item. 图(1) 该算法的原理: 1.  计算Item之间的相似度. 2.  ...

  8. 从源代码剖析Mahout推荐引擎

    转载自:http://blog.fens.me/mahout-recommend-engine/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pi ...

  9. 转】从源代码剖析Mahout推荐引擎

    原博文出自于: http://blog.fens.me/mahout-recommend-engine/ 感谢! 从源代码剖析Mahout推荐引擎 Hadoop家族系列文章,主要介绍Hadoop家族产 ...

随机推荐

  1. 【T-SQL系列】FOR XML PATH 语句的应用

    DECLARE @TempTable TABLE ( UserID INT , UserName ) ); INSERT INTO @TempTable ( UserID, UserName ) , ...

  2. FTP常用故障代码注解

    FTP错误列表 出处:http://bbs.enet.com.cn/UserControl?act=13&threadID 作者: |秒杀』| 详细的FTP错误列表 Restart marke ...

  3. 2013 Multi-University Training Contest 10

    HDU-4698 Counting 题意:给定一个二维平面,其中x取值为1-N,y取值为1-M,现给定K个点,问至少包括K个点中的一个的满足要求的<Xmin, Xmax, Ymin, Ymax& ...

  4. javascript获取类元素

    代码测试是ie5+: 原生javascript中筛选出含有指定类的元素: 思想:在指定范围里把所有的元素筛选出来,然后把里面的每个元素都遍历找出它们含有的所有类,然后逐个元素遍历它们各自的类,如果指定 ...

  5. JS获取URL中参数值(QueryString)的4种方法分享<转>

    方法一:正则法 复制代码代码如下: function getQueryString(name) {    var reg = new RegExp('(^|&)' + name + '=([^ ...

  6. mysql与mysqld

    mysql是客户机/服务器的结构. mysql是客户端行工具,连接mysqld服务,执行sql命令,可认为客户端sdk mysqld 启动mysql数据库服务. 脚本启动mysql服务的命令是 net ...

  7. Java Ant build.xml详解

    1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台   --因为 ...

  8. Eclipse NDK 配置

    一.关于NDK:NDK全称:Native Development Kit. 1.NDK是一系列工具的集合. NDK提供了一系列的工具,帮助开发者快速开发C(或C++)的动态库,并能自动将so和java ...

  9. @synchronized (object)使用详解

    synchronized关键字代表这个方法加锁,相当于不管哪一个线 程A每次运行到这个法时,都要检查有没有其它正在用这个方法的线程B(或者C D等),有的话要等正在使用这个方法的线程B(或者C D)运 ...

  10. Android Netty框架的使用

    Netty框架的使用 1 TCP开发范例 发送地址---192.168.31.241 发送端口号---9223 发送数据 { "userid":"mm910@mbk.co ...