题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3171

题意:

思路:若能构成循环,则每个格子的入度出度
均为1。因此将每个点拆成两个点x1,x2,分别作为出点和入点。出点向周围四个点的入点连边,流1,费用视该格子的字母而定。该格子的字母正好是这个方
向则费用为0否则为1。原点S向每个出点连边,流量1费用0;每个入点向汇点连边,流量1费用0。求最小费用最大流即可。

struct node
{
    int u,v,next,cost,cap;
};

node edges[N];
int head[N],e;

void add(int u,int v,int cap,int cost)
{
    edges[e].u=u;
    edges[e].v=v;
    edges[e].cap=cap;
    edges[e].cost=cost;
    edges[e].next=head[u];
    head[u]=e++;
}

void Add(int u,int v,int cap,int cost)
{
    add(u,v,cap,cost);
    add(v,u,0,-cost);
}

int pre[N],F[N],C[N],visit[N];

int SPFA(int s,int t,int n)
{
    int i;
    for(i=0;i<=n;i++) F[i]=0,C[i]=INF,visit[i]=0;
    queue<int> Q;
    Q.push(s); F[s]=INF; C[s]=0;
    int u,v,cost,cap;
    while(!Q.empty())
    {
        u=Q.front();
        Q.pop();

        visit[u]=0;
        for(i=head[u];i!=-1;i=edges[i].next)
        {
            if(edges[i].cap>0)
            {
                v=edges[i].v;
                cost=edges[i].cost;
                cap=edges[i].cap;
                if(C[v]>C[u]+cost)
                {
                    C[v]=C[u]+cost;
                    F[v]=min(F[u],cap);
                    pre[v]=i;
                    if(!visit[v]) visit[v]=1,Q.push(v);
                }
            }
        }
    }
    return F[t];
}

int MCMF(int s,int t,int n)
{
    int ans=0,i,x,temp;
    while(temp=SPFA(s,t,n))
    {
        for(i=t;i!=s;i=edges[pre[i]].u)
        {
            x=pre[i];
            ans+=edges[x].cost*temp;
            edges[x].cap-=temp;
            edges[x^1].cap+=temp;
        }
    }
    return ans;
}

int a[20][20][2],s,t,n,m;
char S[20][20];

int main()
{
    RD(n,m);
    int i,j,k=0;
    FOR1(i,n) FOR1(j,m)
    {
        a[i][j][0]=++k;
        a[i][j][1]=++k;
    }
    s=0; t=++k;
    FOR1(i,n) RD(S[i]+1);
    int L,R,U,D;
    clr(head,-1);
    FOR1(i,n) FOR1(j,m)
    {
        if(S[i][j]=='U') U=0;
        else U=1;
        if(S[i][j]=='D') D=0;
        else D=1;
        if(S[i][j]=='L') L=0;
        else L=1;
        if(S[i][j]=='R') R=0;
        else R=1;
        if(i==1) Add(a[i][j][0],a[n][j][1],1,U);
        else Add(a[i][j][0],a[i-1][j][1],1,U);

        if(i==n) Add(a[i][j][0],a[1][j][1],1,D);
        else Add(a[i][j][0],a[i+1][j][1],1,D);

        if(j==1) Add(a[i][j][0],a[i][m][1],1,L);
        else Add(a[i][j][0],a[i][j-1][1],1,L);

        if(j==m) Add(a[i][j][0],a[i][1][1],1,R);
        else Add(a[i][j][0],a[i][j+1][1],1,R);

        Add(s,a[i][j][0],1,0);
        Add(a[i][j][1],t,1,0);
    }
    PR(MCMF(s,t,t));
}

BZOJ 3171 循环格(费用流)的更多相关文章

  1. BZOJ 3171 循环格(费用流)

    题意 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c),你可以沿着箭头防线在格子间行走.即如果(r ...

  2. Bzoj 3171: [Tjoi2013]循环格 费用流

    3171: [Tjoi2013]循环格 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 741  Solved: 463[Submit][Status][ ...

  3. BZOJ 3171 循环格 最小费用流

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3171 题目大意: 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元 ...

  4. [TJOI2013]循环格 费用流 BZOJ3171

    题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位(r,c),你可以沿着箭头方向在格子间行走.即:如果 ...

  5. [bzoj 1449] 球队收益(费用流)

    [bzoj 1449] 球队收益(费用流) Description Input Output 一个整数表示联盟里所有球队收益之和的最小值. Sample Input 3 3 1 0 2 1 1 1 1 ...

  6. BZOJ.2597.[WC2007]剪刀石头布(费用流zkw)

    BZOJ 洛谷 \(Description\) 给定一张部分边方向已确定的竞赛图.你需要给剩下的边确定方向,使得图中的三元环数量最多. \(n\leq100\). \(Solution\) 这种选择之 ...

  7. bzoj 1070: [SCOI2007]修车 费用流

    1070: [SCOI2007]修车 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2785  Solved: 1110[Submit][Status] ...

  8. BZOJ 1070 修车 【费用流】

    Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同 的车进行维修所用的时间是不同的.现在需要安排这M位技术人员所维修的车及顺序, ...

  9. BZOJ 1930 吃豆豆(费用流)

    首先这题的两条线不相交的限制可以去掉,因为如果相交的话把点换一换是不影响最终结果的. 剩下的费用流建图是显然的,把点拆为两个,建立超级源点s和源点ss汇点t,连边(s,ss,2,0). 对于每个点,连 ...

随机推荐

  1. 夺命雷公狗---DEDECMS----25dedecms导航条首页的跳转

    我们的导航条首页一直没写跳转,现在我们看看dede自带模版的首页是怎么写的: 他也是封装了一个{dede:global.cfg_cmsurl/}/内置标签来实现的,那么我们来改下我们的head.htm ...

  2. AMBA interconnector PL301(一)

    HPM(High-Performance Matrix)是一个自生成的AMBA3 bus subsystem. 由一个AXI bus matrix,Frequency Conversion Compo ...

  3. java.io.DataInput接口和java.io.DataOutput接口详解

    public interface DataInput DataInput 接口用于从二进制流中读取字节,并重构所有 Java 基本类型数据.同时还提供根据 UTF-8 修改版格式的数据重构 Strin ...

  4. Openstack的的nova list命令

    nova list用于在shell交互模式下查看当前用户存在的实例数目,但是这里仍然要注意的地方: 没有参数的nova list [root@node-5 newstest-master]# nova ...

  5. OpenStack 计算节点删除

    前提 计算节点中一个僵尸计算节点存在,而里面的CPU数目在总物理CPU中,导致认为当前能创建实例.而实际没有这么多资源. 其中node-11为僵尸节点. 原因 删除计算节点不能直接格式化该服务器,否则 ...

  6. D5转Xe点滴

    1. VarIsNull 函数已经被 Variants 单元, 相应的 Var 相关都放在哪 2.原本在 SysUtils 下的部分格式函数或定义,例如 .DecimalSeparator:  Sho ...

  7. 记一个由MemCached引发的性能问题

    最近有个项目用loadrunner做了压力测试,发现并发量还不到200服务器就支撑不住了.boss那边紧急开会,说此项目最近3个月内将有100家中大型公司用于校园招聘工作,如果这个问题不解决公司有可能 ...

  8. Linux kernel的 Makefile和Kconfig以及Make menuconfig的关系【转】

    本文转载自:http://blog.sina.com.cn/s/blog_4ba5b45e0102e6vp.html 熟悉内核的Makefile对开发设备驱动.理解内核代码结构都是非常重要的linux ...

  9. [转]JEXUS的高级配置

    转自:http://www.cnblogs.com/xiaodiejinghong/archive/2013/04/14/3019660.html 前一回合,我们对服务器软件Jexus作了简单的介绍, ...

  10. 各种drawable

    BitmapDrawable   可以把小图片平铺布满布局来设置背景. PictureDrawable    记录绘制过程 ClipDrawable     裁剪   进度条 InsetDrawabl ...