L0/L1/L2范数的联系与区别

标签(空格分隔): 机器学习


最近快被各大公司的笔试题淹没了,其中有一道题是从贝叶斯先验,优化等各个方面比较L0、L1、L2范数的联系与区别。

L0范数

L0范数表示向量中非零元素的个数:
\(||x||_{0} = \#(i)\ with\ \ x_{i} \neq 0\)

也就是如果我们使用L0范数,即希望w的大部分元素都是0. (w是稀疏的)所以可以用于ML中做稀疏编码,特征选择。通过最小化L0范数,来寻找最少最优的稀疏特征项。但不幸的是,L0范数的最优化问题是一个NP hard问题,而且理论上有证明,L1范数是L0范数的最优凸近似,因此通常使用L1范数来代替。

L1范数 -- (Lasso Regression)

L1范数表示向量中每个元素绝对值的和:
\(||x||_{1} = \sum_{i=1}^{n}|x_{i}|\)

L1范数的解通常是稀疏性的,倾向于选择数目较少的一些非常大的值或者数目较多的insignificant的小值。

L2范数 -- (Ridge Regression)

L2范数即欧氏距离:
\(||x||_{2} = \sqrt{\sum_{i=1}^{n}x_{i}^{2}}\)

L2范数越小,可以使得w的每个元素都很小,接近于0,但L1范数不同的是他不会让它等于0而是接近于0.

L1范数与L2范数的比较:


但由于L1范数并没有平滑的函数表示,起初L1最优化问题解决起来非常困难,但随着计算机技术的到来,利用很多凸优化算法使得L1最优化成为可能。

贝叶斯先验

从贝叶斯先验的角度看,加入正则项相当于加入了一种先验。即当训练一个模型时,仅依靠当前的训练数据集是不够的,为了实现更好的泛化能力,往往需要加入先验项。

  • L1范数相当于加入了一个Laplacean先验;
  • L2范数相当于加入了一个Gaussian先验。
    如下图所示:

【Reference】
1. http://blog.csdn.net/zouxy09/article/details/24971995
2. http://blog.sciencenet.cn/blog-253188-968555.html
3. http://t.hengwei.me/post/%E6%B5%85%E8%B0%88l0l1l2%E8%8C%83%E6%95%B0%E5%8F%8A%E5%85%B6%E5%BA%94%E7%94%A8.html

L0/L1/L2范数的联系与区别的更多相关文章

  1. L0/L1/L2范数(转载)

    一.首先说一下范数的概念: 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离. 向量的范数定义:向量的范数是一个函数||x||,满足非负性||x|| > ...

  2. 机器学习中正则惩罚项L0/L1/L2范数详解

    https://blog.csdn.net/zouxy09/article/details/24971995 原文转自csdn博客,写的非常好. L0: 非零的个数 L1: 参数绝对值的和 L2:参数 ...

  3. 机器学习中的规则化范数(L0, L1, L2, 核范数)

    目录: 一.L0,L1范数 二.L2范数 三.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问 ...

  4. L1,L2范数和正则化 到lasso ridge regression

    一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数  表示向量xx中非零元素的个数. L1范数  表示向量中非零元素的绝对值之和. L2范数  表 ...

  5. L0,L1,L2正则化浅析

    在机器学习的概念中,我们经常听到L0,L1,L2正则化,本文对这几种正则化做简单总结. 1.概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数 ...

  6. 13. L1,L2范数

    讲的言简意赅,本人懒,顺手转载过来:https://www.cnblogs.com/lhfhaifeng/p/10671349.html

  7. L1与L2损失函数和正则化的区别

    本文翻译自文章:Differences between L1 and L2 as Loss Function and Regularization,如有翻译不当之处,欢迎拍砖,谢谢~   在机器学习实 ...

  8. L0、L1及L2范数

    L1归一化和L2归一化范数的详解和区别 https://blog.csdn.net/u014381600/article/details/54341317 深度学习——L0.L1及L2范数 https ...

  9. Machine Learning系列--L0、L1、L2范数

    今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个 ...

随机推荐

  1. 【sinatra】结合Padrino framework

    用Sinatra来做复杂的Web应用时,会出现若干个比较麻烦的点. 要手工作成一个个的应用骨架.作成test .view.public目录等等 将Sinatra DSL集中在一个类中的话,画面数量增加 ...

  2. 【SPFA】 最短路计数

    最短路计数 [问题描述]   给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. [输入格式]   输入第一行包含2个正整数N,M,为图的顶点数与边数. ...

  3. 锋利的JQuery(一)

    释义: Ajax:Asynchronous Javascript And XML,异步的Javascript和XML 其它库: Prototype:最早 Dojo:学习曲线陡 YUI:比较丰富 Ext ...

  4. AndroidUI自动化测试工具-UIautomator

    转自:http://www.cnblogs.com/rexmzk/archive/2012/12/26/2834380.html 最近公司在开展Android的自动化测试,美国那边的开发人员利用And ...

  5. VS2010 发布网站时文件丢失

      问题:使用VS发布网站时,发现一些Flv等文件丢失,没有发布到指定文件夹中. 解决办法:打开文件属性窗口,找到生成操作,选项选择“内容”即可. 详细内容可参考官方文档: http://msdn.m ...

  6. js 如何生成唯一且不可预测的 ID

    通常数据库可以生成唯一的 ID,最多的就是数字序列,也有像 MongoDB 这样产生组合序列的,不过这种形式的 ID 由于是序列,是可以预测的.如果想得到不可预测且唯一的 ID,方法还是有的. 下面主 ...

  7. jstl简介

    JavaServer Page Standard Tag Library是一个有用的JSP标签的集合,它封装了许多JSP应用程序通用的核心功能. JSTL支持常见的,结构性任务,如迭代和条件,标签为操 ...

  8. telnet不通11211端口,防火墙

    问题描述: 按照官网步骤,虚拟机里安装并启动memcached, 虚拟机里自己telnet11211端口可以连接, 使用Xmanager22端口可以连接到虚拟机,但是始终telnet不同11211端口 ...

  9. Linux下Nagios的安装与配置

    一.本文说明 本文是在参考:http://www.cnblogs.com/mchina/archive/2013/02/20/2883404.html   David_Tang文章以及网上的一些资料完 ...

  10. PMO究竟啥样?(3)

    PMO究竟啥样?(3) 继续上一篇,PMO究竟啥样?到这篇,这篇文章就完毕啦. 超卓基地COE,4大典型责任 我们知道全部的公司,它都是要不断地继续改善和优化,包括公司内安排级的项目处理的机制,也需求 ...