Manacher算法 O(n) 求最长回文子串
本文转自:http://bbs.dlut.edu.cn/bbstcon.php?board=Competition&gid=23474
首先:大家都知道什么叫回文串吧,这个算法要解决的就是一个字符串中最长的回文子串有多长。这个算法可以在O(n)的时间复杂度内既线性时间复杂度的情况下,求出以每个字符为中心的最长回文有多长,
这个算法有一个很巧妙的地方,它把奇数的回文串和偶数的回文串统一起来考虑了。这一点一直是在做回文串问题中时比较烦的地方。这个算法还有一个很好的地方就是充分利用了字符匹配的特殊性,避免了大量不必要的重复匹配。
算法大致过程是这样。先在每两个相邻字符中间插入一个分隔符,当然这个分隔符要在原串中没有出现过。一般可以用‘#’分隔。这样就非常巧妙的将奇数长度回文串与偶数长度回文串统一起来考虑了(见下面的一个例子,回文串长度全为奇数了),然后用一个辅助数组P记录以每个字符为中心的最长回文串的信息。P[id]记录的是以字符str[id]为中心的最长回文串,当以str[id]为第一个字符,这个最长回文串向右延伸了P[id]个字符(包含str[id]在内的P[id]个字符)。
原串: w aa bwsw f d
新串: # w # a # a # b # w # s # w # f # d #
辅助数组P: 1 2 1 2 3 2 1 2 1 2 1 4 1 2 1 2 1 2 1
这里有一个很好的性质,P[id]-1就是该回文子串在原串中的长度(不包括‘#’)。如果这里不是特别清楚,可以自己拿出纸来画一画,自己体会体会。当然这里可能每个人写法不尽相同,不过我想大致思路应该是一样的吧。
好,我们继续。现在的关键问题就在于怎么在O(n)时间复杂度内求出P数组了。只要把这个P数组求出来,最长回文子串就可以直接扫一遍得出来了。
由于这个算法是线性从前往后扫的。那么当我们准备求P[i]的时候,i以前的P[j]我们是已经得到了的。我们用mx记在i之前的回文串中,延伸至最右端的位置。同时用id这个变量记下取得这个最优mx时的id值。(注:为了防止字符比较的时候越界,我在这个加了‘#’的字符串之前还加了另一个特殊字符‘$’,故我的新串下标是从1开始的)
好,到这里,我们可以先贴一份代码了。
void pk()
{
int i;
int mx = ;
int id;
for(i=; i<n; i++)
{
if( mx > i )
p[i] = MIN( p[*id-i], mx-i );
else
p[i] = ;
for(; str[i+p[i]] == str[i-p[i]]; p[i]++)
;
if( p[i] + i > mx )
{
mx = p[i] + i;
id = i;
}
}
}
代码是不是很短啊,而且相当好写。很方便吧,还记得我上面说的这个算法避免了很多不必要的重复匹配吧。这是什么意思呢,其实这就是一句代码。
if( mx > i )
p[i] = MIN( p[2*id-i], mx-i );
就是当前面比较的最远长度mx>i的时候,P[i]有一个最小值。这个算法的核心思想就在这里,为什么P数组满足这样一个性质呢?
(下面的部分为图片形式)
两个基本题:hdu 3068 poj 3974
#include<cstdio>
#include<cstring>
const int M = *;
char str[M];//start from index 1
int p[M];
char s[M];
int n;
void checkmax(int &ans,int b){
if(b>ans) ans=b;
}
inline int min(int a,int b){
return a<b?a:b;
}
void kp(){
int i;
int mx = ;
int id;
for(i=; i<n; i++){
if( mx > i )
p[i] = min( p[*id-i], p[id]+id-i );
else
p[i] = ;
for(; str[i+p[i]] == str[i-p[i]]; p[i]++) ;
if( p[i] + i > mx ) {
mx = p[i] + i;
id = i;
}
}
}
void pre()
{
int i,j,k;
n = strlen(s);
str[] = '$';
str[] = '#';
for(i=;i<n;i++)
{
str[i* + ] = s[i];
str[i* + ] = '#';
}
n = n* + ;
str[n] = ;
} void pt()
{
int i;
int ans = ;
for(i=;i<n;i++)
checkmax(ans, p[i]);
printf("%d\n", ans-);
} int main()
{
int T,_=;
while( scanf("%s", s) !=EOF )
{
pre();
kp();
pt();
}
return ;
}
Manacher算法 O(n) 求最长回文子串的更多相关文章
- [算法] Manacher算法线性复杂度内求解最长回文子串
参考:http://www.felix021.com/blog/read.php?2040 以上参考的原文写得很好,解析的非常清楚.以下用我自己的理解,对关键部分算法进行简单的描述: 回文的判断需要完 ...
- PAT甲题题解-1040. Longest Symmetric String (25)-求最长回文子串
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789177.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- Manacher模板( 线性求最长回文子串 )
模板 #include<stdio.h> #include<string.h> #include<algorithm> #include<map> us ...
- hdu 3068 最长回文(manachar求最长回文子串)
题目连接:hdu 3068 最长回文 解题思路:通过manachar算法求最长回文子串,如果用遍历的话绝对超时. #include <stdio.h> #include <strin ...
- Manacher算法——求最长回文子串
首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...
- manacher算法求最长回文子串
一:背景 给定一个字符串,求出其最长回文子串.例如: s="abcd",最长回文长度为 1: s="ababa",最长回文长度为 5: s="abcc ...
- Manacher 求最长回文子串算法
Manacher算法,是由一个叫Manacher的人在1975年发明的,可以在$O(n)$的时间复杂度里求出一个字符串中的最长回文子串. 例如这两个回文串“level”.“noon”,Manacher ...
- Manacher算法(马拉车)求最长回文子串
Manacher算法求最长回文字串 算法思路 按照惯例((・◇・)?),这里只是对算法的一些大体思路做一个描述,因为找到了相当好理解的博客可以参考(算法细节见参考文章). 一般而言,我们的判断回文算法 ...
- [hdu3068 最长回文]Manacher算法,O(N)求最长回文子串
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 题意:求一个字符串的最长回文子串 思路: 枚举子串的两个端点,根据回文串的定义来判断其是否是回文 ...
随机推荐
- ruby 程序中的文字编码
1,问题 在写一个统计代码行数的脚本时遇到一个问题: 代码: file_name = "code.rb"c = 0File.foreach(file_name) do |x| ne ...
- char与 int 类型转化问题汇总
1.char变为int时高位符号扩展问题 int main() { char a = 0x9a; int util; util = (int)a; if(util > 0) printf(&qu ...
- c++编程规范的纲要和记录
这是一本好书, 可以让你认清自己对C++的掌握程度.看完之后,给自己打分,我对C++了解多少? 答案是不足20分.对于我自己是理所当然的问题, 就不提了, 记一些有启发的条目和细节: (*号表示不能完 ...
- ios9网络请求https适配
发现问题:今天升级Xcode 7.0 bata发现网络访问失败.输出错误信息: The resource could not be loaded because the App Transport S ...
- Redis 在windows环境下安装
一.下载适合自己的windows版本 下载地址:https://github.com/dmajkic/redis/downloads 当你解压后,就拥有了全套的应用文件
- MYSQL procedure
没怎么接触过mysql procedure,今天建个calendar表还磨磨唧唧的,记录一下: CREATE PROCEDURE `new_procedure` (start_date DATA,en ...
- week 9 scenario testing
1:How do you expect different personas to use your software? What’s their need and their goals, ho ...
- Spring集成hibernate错误
八月 25, 2016 7:55:31 下午 org.apache.tomcat.util.digester.SetPropertiesRule begin警告: [SetPropertiesRule ...
- mysql 慢查询开启
相关博客: linux下开启mysql慢查询,分析查询语句 开启方法: 方法一:使用命令开启慢查询开启 mysql> show variables like "%long%" ...
- android开发 两张bitmap图片合成一张图片
场景:对android4.4解码gif(解码文章见前面一篇)后的图片进行每帧处理,android4.3 解码出来的每帧都很完整,但是到android4.4版本就不完整了,每帧都是在第一帧的基础上把被改 ...